181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A rational in silico approach to identify inhibitors of Batroxrhagin from Bothrops atrox

, , , , & ORCID Icon
Pages 9620-9635 | Received 25 Aug 2020, Accepted 17 May 2021, Published online: 01 Jun 2021

References

  • Alcântara, J. A., Bernarde, P. S., Sachett, J., da Silva, A. M., Valente, S. F., Peixoto, H. M., Lacerda, M., Oliveira, M. R., Saraiva, I., Sampaio, V. d. S., & Monteiro, W. M. (2018). Stepping into a dangerous quagmire: Macroecological determinants of Bothrops envenomings, Brazilian Amazon. PLOS One, 13(12), e0208532. https://doi.org/10.1371/journal.pone.0208532
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Alves, R. M., Feliciano, P. R., Sampaio, S. V., & Nonato, M. C. (2011). A rational protocol for the successful crystallization of L-amino-acid oxidase from Bothrops atrox. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 67(4), 475–478. https://doi.org/10.1107/S1744309111003770
  • Amazonas, D. R., Nishiyama, M. Y., Jr., Gibbs, H. L., Rokyta, D. R., Junqueira-de-Azevedo, I. L., & Moura-da-Silva, A. M. (2015). Transcriptomic analysis of venom glands from five Bothrops atrox snakes. The UniProt Consortium. https://www.uniprot.org/uniprot/A0A1L8D603
  • Andricopulo, A. D., Guido, R. V., & Oliva, G. (2008). Virtual screening and its integration with modern drug design technologies. Current Medicinal Chemistry, 15(1), 37–46. https://doi.org/10.2174/092986708783330683
  • Arias, A. S., Rucavado, A., & Gutiérrez, J. M. (2017). Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon, 132, 40–49. https://doi.org/10.1016/j.toxicon.2017.04.001
  • Barreto, G. N. L. S., de Oliveira, S. S., dos Anjos, I. V., de Menezes Chalkidis, H., Mourão, R. H. V., da Silva, A. M. M., Sano-Martins, I. S., & de Camargo Gonçalves, L. R. (2017). Experimental Bothrops atrox envenomation: Efficacy of antivenom therapy and the combination of Bothrops antivenom with dexamethasone. PLoS Neglected Tropical Diseases, 11(3), e0005458. https://doi.org/10.1371/journal.pntd.0005458
  • Bello, C. A., Hermogenes, A. L. N., Magalhaes, A., Veiga, S. S., Gremski, L. H., Richardson, M., & Sanchez, E. F. (2006). Isolation and biochemical characterization of a fibrinolytic proteinase from Bothrops leucurus (white-tailed jararaca) snake venom. Biochimie, 88(2), 189–200. https://doi.org/10.1016/j.biochi.2005.07.008
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bjarnason, J. B., & Fox, J. W. (1994). Hemorrhagic metalloproteinases from snake venoms. Pharmacology & Therapeutics, 62(3), 325–372. https://doi.org/10.1016/0163-7258(94)90049-3
  • Bjarnason, J. B., & Fox, J. W. (1995). [21] Snake venom metalloendopeptidases: Reprolysins. In Methods in enzymology (Vol. 248, pp. 345–368). Academic Press. https://doi.org/10.1016/0076-6879(95)48023-4
  • Borhani, D. W., & Shaw, D. E. (2012). The future of molecular dynamics simulations in drug discovery. Journal of Computer-Aided Molecular Design, 26(1), 15–26. https://doi.org/10.1007/s10822-011-9517-y
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Brazil Ministry of Health. (2020). Sistema de informação de agravos de notificação - SINAN Net. http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/animaisbr.def
  • Chinnasamy, S., Chinnasamy, S., Nagamani, S., & Muthusamy, K. (2015). Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 33(7), 1516–1527. https://doi.org/10.1080/07391102.2014.963146
  • Chippaux, J. P. (2017). Snakebite envenomation turns again into a neglected tropical disease!. Journal of Venomous Animals and Toxins including Tropical Diseases, 23(1), 1–2. https://doi.org/10.1186/s40409-017-0127-6
  • Cohen, F., Koehler, M. F., Bergeron, P., Elliott, L. O., Flygare, J. A., Franklin, M. C., Gazzard, L., Keteltas, S. F., Lau, K., Ly, C. Q., Tsui, V., & Fairbrother, W. J. (2010). Antagonists of inhibitor of apoptosis proteins based on thiazole amide isosteres. Bioorganic & Medicinal Chemistry Letters, 20(7), 2229–2233. https://doi.org/10.1016/j.bmcl.2010.02.021
  • Coutinho-Neto, A., Cardozo-Filho, J. L., Caldeira, C. A. S., Silva, L. P., Bloch, C., Jr., Calderon, L. A., & Stabeli, R. G. (2010). Identification of peptides from Amazonian Bothrops atrox venom by MALDI TOF/TOF. The UniProt Consortium. https://www.uniprot.org/uniprot/P86721
  • Delgadillo, J. C., Rodriguez, E. F., Sandoval, G. A., Lazo, F. E., Yarleque, A., & Vivas-Ruiz, D. E. (2017). Hyal-Ba a new hyaluronidase from Bothrops atroxperuvian snake venom: Molecular sequence analysis of its cDNA and biochemical properties. The UniProt Consortium. https://www.uniprot.org/uniprot/A0A2H4Z8F4
  • Escalante, T., Franceschi, A., Rucavado, A., & Gutiérrez, J. M. (2000). Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochemical Pharmacology, 60(2), 269–274. https://doi.org/10.1016/S0006-2952(00)00302-6
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Falcao, C. B., de La Torre, B. G., Pérez-Peinado, C., Barron, A. E., Andreu, D., & Rádis-Baptista, G. J. A. A. (2014). Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids, 46(11), 2561–2571. https://doi.org/10.1007/s00726-014-1801-4
  • Fenwick, A. M., Gutberlet, R. L., Evans, J. A., & Parkinson, C. L. (2009). Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zoological Journal of the Linnean Society, 156(3), 617–640. https://doi.org/10.1111/j.1096-3642.2008.00495.x
  • Ferreira, L. G., Oliva, G., & Andricopulo, A. D. (2018). From medicinal chemistry to human health: Current approaches to drug discovery for cancer and neglected tropical diseases. Anais da Academia Brasileira de Ciências, 90(1), 645–661. https://doi.org/10.1590/0001-3765201820170505
  • Freitas-de-Sousa, L. A., Amazonas, D. R., Sousa, L. F., Sant'Anna, S. S., Nishiyama, M. Y., Jr, Serrano, S. M. T., Junqueira-de-Azevedo, I. L., Chalkidis, H. M., Moura-da-Silva, A. M., & Mourão, R. H. V. (2015). Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species. Biochimie, 118, 60–70. https://doi.org/10.1016/j.biochi.2015.08.006
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • FUNASA. (2001). Manual de diagnóstico e tratamento de acidentes por animais peçonhentos (2nd ed.). Assessoria de Comunicação e Educação em Saúde.
  • Georgieva, D., Arni, R. K., & Betzel, C. (2014). Proteome analysis of snake venom toxins: Pharmacological insights. Expert Review of proteomics, 5(6), 787–797. https://doi.org/10.1586/14789450.5.6.787
  • Gimeno, A., Ojeda-Montes, M., Tomás-Hernández, S., Cereto-Massagué, A., Beltrán-Debón, R., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2019). The light and dark sides of virtual screening: What is there to know? International Journal of Molecular Sciences, 20(6), 1375. https://doi.org/10.3390/ijms20061375
  • Girish, K. S., Katkar, G. D., Harrison, R. A., & Kemparaju, K. (2019). Research into the causes of venom-induced mortality and morbidity identifies new therapeutic opportunities. The American Journal of Tropical Medicine and Hygiene, 100(5), 1043–1048. https://doi.org/10.4269/ajtmh.17-0877
  • Godden, J. W., Xue, L., & Bajorath, J. (2000). Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. Journal of Chemical Information and Computer Sciences, 40(1), 163–166. https://doi.org/10.1021/ci990316u
  • Grinter, S. Z., & Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules, 19(7), 10150–10176. https://doi.org/10.3390/molecules190710150
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Gutiérrez, J. M. (2019). Global availability of antivenoms: The relevance of public manufacturing laboratories. Toxins, 11(1), 5. https://doi.org/10.3390/toxins11010005
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Igarashi, T., Araki, S., Mori, H., & Takeda, S. (2007). Crystal structures of Catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. FEBS Letters, 581(13), 2416–2422. https://doi.org/10.1016/j.febslet.2007.04.057
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Kaas, Q., & Craik, D. J. (2015). Bioinformatics-aided venomics. Toxins, 7(6), 2159–2187. https://doi.org/10.3390/toxins7062159
  • Kaboli, P. J., Bazrafkan, M., Ismail, P., & Ling, K. H. (2017). Molecular modelling of berberine derivatives as inhibitors of human smoothened receptor and hedgehog signalling pathway using a newly developed algorithm on anti-cancer drugs. Recent Patents on Anti-cancer Drug Discovery, 12(4), 384–400. https://doi.org/10.2174/1574892812666170929131247
  • Kastritis, P. L., Rodrigues, J. P., & Bonvin, A. M. (2014). HADDOCK2P2I: A biophysical model for predicting the binding affinity of protein–protein interaction inhibitors. Journal of Chemical Information and Modeling, 54(3), 826–836. https://doi.org/10.1021/ci4005332
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Wang, J. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Kirubakaran, P., Kothapalli, R., Singh, K. D., Nagamani, S., Arjunan, S., & Muthusamy, K. (2011). In silico studies on marine actinomycetes as potential inhibitors for Glioblastoma multiforme. Bioinformation, 6(3), 100. https://doi.org/10.6026/97320630006100
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27, 129–134. https://doi.org/10.1002/pro.3289
  • Lavecchia, A., & Di Giovanni, C. (2013). Virtual screening strategies in drug discovery: A critical review. Current Medicinal Chemistry, 20(23), 2839–2860. https://doi.org/10.2174/09298673113209990001
  • Layfield, H. J., Williams, H. F., Ravishankar, D., Mehmi, A., Sonavane, M., Salim, A., Vaiyapuri, R., Lakshminarayanan, K., Vallance, T. M., Bicknell, A. B., Trim, S. A., Patel, K., & Vaiyapuri, S. (2020). Repurposing cancer drugs batimastat and marimastat to inhibit the activity of a group I metalloprotease from the venom of the Western diamondback rattlesnake, Crotalus atrox. Toxins, 12(5), 309. https://doi.org/10.3390/toxins12050309
  • Lei, D., Zhang, X., Jiang, S., Cai, Z., Rames, M. J., Zhang, L., Ren, G., & Zhang, S. (2013). Structural features of cholesteryl ester transfer protein: A molecular dynamics simulation study. Proteins: Structure, Function, and Bioinformatics, 81(3), 415–425. https://doi.org/10.1002/prot.24200
  • Lingott, T., Schleberger, C., Gutiérrez, J. M., & Merfort, I. (2009). High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: Insight into inhibitor binding. Biochemistry, 48(26), 6166–6174. https://doi.org/10.1021/bi9002315
  • Lionta, E., Spyrou, G. K., Vassilatis, D., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. https://doi.org/10.2174/1568026614666140929124445
  • Lou, Z., Hou, J., Liang, X., Chen, J., Qiu, P., Liu, Y., Li, M., Rao, Z., & Yan, G. (2005). Crystal structure of a non-hemorrhagic fibrin (ogen) olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus. Journal of Structural Biology, 152(3), 195–203. https://doi.org/10.1016/j.jsb.2005.09.006
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Markland, F. S., Jr., & Swenson, S. (2013). Snake venom metalloproteinases. Toxicon, 62, 3–18. https://doi.org/10.1016/j.toxicon.2012.09.004
  • Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., & Šali, A. (2000). Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure, 29(1), 291–325. https://doi.org/10.1146/annurev.biophys.29.1.291
  • Mattei, M., Carnieri, E., Politi, V., D'Alessio, S., Sella, A., Cassol, M., Robeva, A., Colizzi, V., & Sumerska, T. (2002). Inhibition of contact hypersensitivity reaction to picryl chloride: Effect of small molecular weight peptidomimetic compounds possessing inhibitory activity against metalloproteinases. International Immunopharmacology, 2(5), 699–710. https://doi.org/10.1016/S1567-5769(02)00005-X
  • Mazzi, M. V., Magro, A. J., Amui, S. F., Oliveira, C. Z., Ticli, F. K., Stábeli, R. G., Fuly, A. L., Rosa, J. C., Braz, A. S., Fontes, M. R., Sampaio, S. V., & Sampaio, S. V. (2007). Molecular characterization and phylogenetic analysis of BjussuMP-I: A RGD-P-III class hemorrhagic metalloprotease from Bothrops jararacussu snake venom. Journal of Molecular Graphics and Modelling, 26(1), 69–85. https://doi.org/10.1016/j.jmgm.2006.09.010
  • McDiarmid, R. W., Campbell, J. A., & Touré, T. (1999). Snake species of the world: A taxonomic and geographic reference (1st ed.). Herpetologists' League.
  • Mendonça-Franqueiro, E. D. P., Alves-Paiva, R. D. M., Sartim, M. A., Callejon, D. R., Paiva, H. H., Antonucci, G. A., Rosa, J. C., Cintra, A. C. O., Franco, J. J., Arantes, E. C., & Dias-Baruffi, M. (2011). Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom. Acta Biochimica et Biophysica Sinica, 43(3), 181–192. https://doi.org/10.1093/abbs/gmr003
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Moura-da-Silva, A. M., Almeida, M. T., Portes-Junior, J. A., Nicolau, C. A., Gomes-Neto, F., & Valente, R. H. (2016). Processing of snake venom metalloproteinases: Generation of toxin diversity and enzyme inactivation. Toxins, 8(6), 183. https://doi.org/10.3390/toxins8060183
  • Munawar, A., Ali, S. A., Akrem, A., & Betzel, C. (2018). Snake venom peptides: Tools of biodiscovery. Toxins, 10(11), 474. https://doi.org/10.3390/toxins10110474
  • Muniz, J. R., Ambrosio, A. L., Selistre-de-Araujo, H. S., Cominetti, M. R., Moura-da-Silva, A. M., Oliva, G., Garratt, R. C., & Souza, D. H. (2008). The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: Insights for a new classification of snake venom metalloprotease subgroups. Toxicon, 52(7), 807–816. https://doi.org/10.1016/j.toxicon.2008.08.021
  • Núñez, V., Arce, V., Gutiérrez, J. M., & Lomonte, B. (2004). Structural and functional characterization of myotoxin I, a Lys49 phospholipase A2 homologue from the venom of the snake Bothrops atrox. Toxicon, 44(1), 91–101. https://doi.org/10.1016/j.toxicon.2004.04.013
  • Ojeda, P. G., Ramírez, D., Alzate-Morales, J., Caballero, J., Kaas, Q., & González, W. (2018). Computational studies of snake venom toxins. Toxins, 10(1), 8. https://doi.org/10.3390/toxins10010008
  • Pardal, P. P. D. O., Souza, S. M., Monteiro, M. R. D. C. D. C., Fan, H. W., Cardoso, J. L. C., França, F. O. S., Tomy, S. C., Sano-Martins, I. S., de Sousa-e-Silva, M. C., Colombini, M., Kodera, N. F., Moura-da-Silva, A. M., Cardoso, D. F., Velarde, D. T., Kamiguti, A. S., Theakston, R. D., & Kodera, N. F. (2004). Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(1), 28–42. https://doi.org/10.1016/S0035-9203(03)00005-1
  • Patiño, A. C., Pereañez, J. A., Núñez, V., Benjumea, D. M., Fernandez, M., Rucavado, A., Sanz, L., & Calvete, J. J. (2010). Isolation and biological characterization of Batx-I, a weak hemorrhagic and fibrinogenolytic PI metalloproteinase from Colombian Bothrops atrox venom. Toxicon, 56(6), 936–943. https://doi.org/10.1016/j.toxicon.2010.06.016
  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., & Joannopoulos, A. J. (1992). Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64(4), 1045–1097. https://doi.org/10.1103/RevModPhys.64.1045
  • Petretski, J. H., Kanashiro, M. M., Rodrigues, F. R., Alves, E. W., Machado, O. L., & Kipnis, T. L. (2000). Edema induction by the disintegrin-like/cysteine-rich domains from a Bothrops atrox hemorrhagin. Biochemical and Biophysical Research Communications, 276(1), 29–34. https://doi.org/10.1006/bbrc.2000.3419
  • Pierce, B. G., Hourai, Y., & Weng, Z. (2011). Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLOS One, 6(9), e24657. https://doi.org/10.1371/journal.pone.0024657
  • Pinho, F. M. O., & Pereira, I. D. (2001). OFIDISMO. Revista da Associação Médica Brasileira, 47(1), 24–29. https://doi.org/10.1590/s0104-42302001000100026
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489. https://doi.org/10.1006/jmbi.1996.0477
  • Rucinski, B., Niewiarowski, S., Holt, J. C., Soszka, T., & Knudsen, K. A. (1990). Batroxostatin, an Arg-Gly-Asp-containing peptide from Bothrops atrox, is a potent inhibitor of platelet aggregation and cell interaction with fibronectin. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1054(3), 257–262. https://doi.org/10.1016/0167-4889(90)90096-V
  • Sachett, J. A. G., da Silva, I. M., Alves, E. C., Oliveira, S. S., Sampaio, V. S., do Vale, F. F., Romero, G. A. S., dos Santos, M. C., Marques, H. O., Colombini, M., da Silva, A. M. M., Wen, F. H., Lacerda, M. V. G., Monteiro, W. M., & Ferreira, L. C. L. (2017). Poor efficacy of preemptive amoxicillin clavulanate for preventing secondary infection from Bothrops snakebites in the Brazilian Amazon: A randomized controlled clinical trial. PLOS Neglected Tropical Diseases, 11(7), e0005745. https://doi.org/10.1371/journal.pntd.0005745
  • Sanchez, E. F., Schneider, F. S., Yarleque, A., Borges, M. H., Richardson, M., Figueiredo, S. G., Evangelista, K. S., & Eble, J. A. (2010). The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergón) snake venom acts both on blood vessel ECM and platelets. Archives of Biochemistry and Biophysics, 496(1), 9–20. https://doi.org/10.1016/j.abb.2010.01.010
  • Song, C. M., Lim, S. J., & Tong, J. C. (2009). Recent advances in computer-aided drug design. Briefings in Bioinformatics, 10(5), 579–591. https://doi.org/10.1093/bib/bbp023
  • Sousa, L. F., Nicolau, C. A., Peixoto, P. S., Bernardoni, J. L., Oliveira, S. S., Portes-Junior, J. A., Mourão, R. H., Lima-dos-Santos, I., Sano-Martins, I. S., Chalkidis, H. M., Valente, R. H., & Valente, R. H. (2013). Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex. PLOS Neglected Tropical Diseases, 7(9), e2442. https://doi.org/10.1371/journal.pntd.0002442
  • Tavares, N. A. C., Correia, J. M., Guarnieri, M. C., Lima-Filho, J. L., Prieto-da-Silva, A. R. B., & Rádis-Baptista, G. (2008). Expression of mRNAs coding for VAP1/crotastatin-like metalloproteases in the venom glands of three South American pit vipers assessed by quantitative real-time PCR. Toxicon, 52(8), 897–907. https://doi.org/10.1016/j.toxicon.2008.08.022
  • Uetz, P., & Etzold, T. (1996). The EMBL/EBI reptile database. Herpetological Review, 27, 175. http://www.reptile-database.org/
  • UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Varney, M. D., Appelt, K., Kalish, V., Reddy, M. R., Tatlock, J., Palmer, C. L., Romines, W. H., Wu, B. W., & Musick, L. (1994). Crystal-structure-based design and synthesis of novel C-terminal inhibitors of HIV protease. Journal of Medicinal Chemistry, 37(15), 2274–2284. https://doi.org/10.1021/jm00041a005
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5–6. https://doi.org/10.1002/cpbi.3
  • World Health Organization. (2020). What is snakebite envenoming?. https://www.who.int/snakebites/disease/en/
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., III, Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all‐atom structure validation. Protein Science, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Williams, H. F., Layfield, H. J., Vallance, T., Patel, K., Bicknell, A. B., Trim, S. A., & Vaiyapuri, S. (2019a). The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins, 11(6), 363. https://doi.org/10.3390/toxins11060363
  • Williams, H. F., Mellows, B. A., Mitchell, R., Sfyri, P., Layfield, H. J., Salamah, M., Vaiyapuri, R., Collins-Hooper, H., Bicknell, A. B., Matsakas, A., Patel, K., & Patel, K. (2019b). Mechanisms underpinning the permanent muscle damage induced by snake venom metalloprotease. PLoS Neglected Tropical Diseases, 13(1), e0007041. https://doi.org/10.1371/journal.pntd.0007041
  • Zhu, Z., Gao, Y., Zhu, Z., Yu, Y., Zhang, X., Zang, J., Teng, M., & Niu, L. (2009). Structural basis of the autolysis of AaHIV suggests a novel target recognizing model for ADAM/reprolysin family proteins. Biochemical and Biophysical Research Communications, 386(1), 159–164. https://doi.org/10.1016/j.bbrc.2009.06.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.