680
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards

, , &
Pages 10481-10506 | Received 03 Dec 2020, Accepted 17 May 2021, Published online: 15 Jun 2021

References

  • A Barmade, M., R Murumkar, P., Kumar Sharma, M., P., Shingala, K., R Giridhar, R., & Ram Yadav, M. (2015). Discovery of anti-malarial agents through application of in silico studies. Combinatorial Chemistry & High Throughput Screening, 18(2), 151–187. https://doi.org/10.2174/1386207318666141229125852
  • A Phillips, M., & K Rathod, P. (2010). Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infectious Disorders - Drug Targets, 10(3), 226–239. https://doi.org/10.2174/187152610791163336
  • Abbat, S., Jain, V., & Bharatam, P. V. (2015). Origins of the specificity of inhibitor P218 toward wild-type and mutant PfDHFR: A molecular dynamics analysis. Journal of Biomolecular Structure & Dynamics, 33(9), 1913–1928. https://doi.org/10.1080/07391102.2014.979231
  • Adhikari, N., Halder, A. K., Mondal, C., & Jha, T. (2013). Exploring structural requirements of aurone derivatives as antimalarials by validated DFT-based QSAR, HQSAR, and COMFA-COMSIA approach. Medicinal Chemistry Research, 22(12), 6029–6045. https://doi.org/10.1007/s00044-013-0590-8
  • Aguiar, A. C., de Sousa, L. R. F., Garcia, C. R. S., Oliva, G., & Guido, R. V. C. (2019). New molecular targets and strategies for antimalarial discovery. Current Medicinal Chemistry, 26(23), 4380–4402. https://doi.org/10.2174/0929867324666170830103003
  • Aguiar, A. C. C., Panciera, M., Simao Dos Santos, E. F., Singh, M. K., Garcia, M. L., De Souza, G. E., Nakabashi, M., Costa, J. L., Garcia, C. R. S., Oliva, G., Correia, C. R. D., & Guido, R. V. C. (2018). Discovery of marinoquinolines as potent and fast-acting Plasmodium falciparum inhibitors with in vivo activity. Journal of Medicinal Chemistry, 61(13), 5547–5568. https://doi.org/10.1021/acs.jmedchem.8b00143
  • Aher, R. B., & Roy, K. (2016). Exploring structural requirements for the inhibition of: Plasmodium falciparum calcium-dependent protein kinase-4 (Pf CDPK-4) using multiple in silico approaches. RSC Advances, 6(57), 51957–51982. https://doi.org/10.1039/C6RA05692J
  • Aher, R. B., & Roy, K. (2017). Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies. SAR and QSAR in Environmental Research, 28(5), 390–414. https://doi.org/10.1080/1062936X.2017.1326401
  • Aher, R. B., & Roy, K. (2019). Design of antimalarial transmission blocking agents: Pharmacophore mapping of ligands active against stage-V mature gametocytes of Plasmodium falciparum. Journal of Biomolecular Structure and Dynamics, 37(14), 3660–3673. https://doi.org/10.1080/07391102.2018.1524333
  • Ahmed, N., Anwar, S., & Thet Htar, T. (2017). Docking based 3D-QSAR study of tricyclic guanidine analogues of batzelladine K as anti-malarial agents. Frontiers in Chemistry, 5(36), 00036. https://doi.org/10.3389/fchem.2017.00036
  • Ambre, P., Wavhale, R., & C Coutinho, E. (2015). New horizons in antimalarial drug discovery in the last decade by chemoinformatic approaches. Combinatorial Chemistry & High Throughput Screening, 18(2), 129–150. https://doi.org/10.2174/1386207318666141229125155
  • Aneja, B., Kumar, B., Jairajpuri, M. A., & Abid, M. (2016). A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Advances, 6(22), 18364–18406. https://doi.org/10.1039/C5RA19673F
  • Araujo, J. S. C., de Souza, B. C., Costa Junior, D. B., Oliveira, L., de, M., Santana, I. B., Duarte, A. A., Lacerda, P. S., dos Santos Junior, M. C., & Leite, F. H. A. (2018). Identification of new promising Plasmodium falciparum superoxide dismutase allosteric inhibitors through hierarchical pharmacophore-based virtual screening and molecular dynamics. Journal of Molecular Modeling, 24(8), 3746–3750. https://doi.org/10.1007/s00894-018-3746-0
  • Aroonsri, A., Akinola, O., Posayapisit, N., Songsungthong, W., Uthaipibull, C., Kamchonwongpaisan, S., Gbotosho, G. O., Yuthavong, Y., & Shaw, P. J. (2016). Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling. International Journal for Parasitology, 46(8), 527–535. https://doi.org/10.1016/j.ijpara.2016.04.002
  • Ashton, T. D., Devine, S. M., Möhrle, J. J., Laleu, B., Burrows, J. N., Charman, S. A., Creek, D. J., & Sleebs, B. E. (2019). The development process for discovery and clinical advancement of modern antimalarials. Journal of Medicinal Chemistry, 62(23), 10526–10562. https://doi.org/10.1021/acs.jmedchem.9b00761
  • Batool, S., Khan, Z., Kamal, W., Mushtaq, G., & Kamal, M. (2015). In silico screening for identification of novel anti-malarial inhibitors by molecular docking, pharmacophore modeling and virtual screening. Medicinal Chemistry, 11(7), 687–700. https://doi.org/10.2174/1573406411666150305113533
  • Beheshti, A., Pourbasheer, E., Nekoei, M., & Vahdani, S. (2016). QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm-multiple linear regressions. Journal of Saudi Chemical Society, 20(3), 282–290. https://doi.org/10.1016/j.jscs.2012.07.019
  • Benelli, G., & Beier, J. C. (2017). Current vector control challenges in the fight against malaria. Acta Tropica, 174, 91–96. https://doi.org/10.1016/j.actatropica.2017.06.028
  • Bhagat, S., Arfeen, M., Adane, L., Singh, S., Singh, P. P., Chakraborti, A. K., & Bharatam, P. V. (2017). Guanylthiourea derivatives as potential antimalarial agents: Synthesis, in vivo and molecular modelling studies. European Journal of Medicinal Chemistry, 135(28), 339–348. https://doi.org/10.1016/j.ejmech.2017.04.022
  • Bhat, H. R., Singh, U. P., Gahtori, P., Ghosh, S. K., Gogoi, K., Prakash, A., & Singh, R. K. (2013). Antimalarial activity and docking studies of novel bi-functional hybrids derived from 4-aminoquinoline and 1,3,5-triazine against wild and mutant malaria parasites as pf-DHFR inhibitor. RSC Advances, 3(9), 2942–2952. ( Issue https://doi.org/10.1039/c2ra21915h
  • Biagini, G. A., Pasini, E. M., Hughes, R., De Koning, H. P., Vial, H. J., O'Neill, P. M., Ward, S. A., & Bray, P. G. (2004). Characterization of the choline carrier of Plasmodium falciparum: A route for the selective delivery of novel antimalarial drugs. Blood, 104(10), 3372–3377. https://doi.org/10.1182/blood-2004-03-1084
  • Biamonte, M. A., Wanner, J., & Le, R. K. G. (2013). Recent advances in malaria drug discovery. Bioorganic & Medicinal Chemistry Letters, 23(10), 2829–2843. https://doi.org/10.1016/j.bmcl.2013.03.067
  • Caballero-Alfonso, A. Y., Cruz-Monteagudo, M., Tejera, E., Benfenati, E., Borges, F., Cordeiro, M. N. D. S., Armijos-Jaramillo, V., & Perez-Castillo, Y. (2019). Ensemble-based modeling of chemical compounds with antimalarial activity. Current Topics in Medicinal Chemistry, 19(11), 957–969. https://doi.org/10.2174/1568026619666190510100313
  • Chu, X., Wang, C., Liu, W., Liang, L., Gong, K., Zhao, C., & Sun, K. (2019). Quinoline and quinolone dimers and their biological activities: An overview. European Journal of Medicinal Chemistry, 161, 101–117. https://doi.org/10.1016/j.ejmech.2018.10.035
  • Chu, X. M., Wang, C., Wang, W. L., Liang, L. L., Liu, W., Gong, K. K., & Sun, K. L. (2019). Triazole derivatives and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 166, 206–223. https://doi.org/10.1016/j.ejmech.2019.01.047
  • Coombs, G. H., Goldberg, D. E., Klemba, M., Berry, C., Kay, J., & Mottram, J. C. (2001). Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends in Parasitology, 17(11), 532–537. https://doi.org/10.1016/s1471-4922(01)02037-2
  • Coronado, L. M., Nadovich, C. T., & Spadafora, C. (2014). Malarial hemozoin: From target to tool. Biochimica et Biophysica Acta, 1840(6), 2032–2041. https://doi.org/10.1016/j.bbagen.2014.02.009
  • Cox, F. E., Grassi, G. B., Bignami, A., Bastianelli, G., Celli, A., Golgi, C., & Marchiafava, E. (2010). History of the discovery of the malaria parasites and their vectors. Parasites & Vectors, 1(3), 3–5.
  • Daniyan, M. O., & Blatch, G. L. (2017). Plasmodial Hsp40s: New avenues for antimalarial drug discovery. Current Pharmaceutical Design, 23(30), 4555–4570. https://doi.org/10.2174/1381612823666170124142439
  • Daniyan, M. O., & Ojo, O. T. (2019). In silico identification and evaluation of potential interaction of Azadirachta indica phytochemicals with Plasmodium falciparum heat shock protein 90. Journal of Molecular Graphics & Modelling, 87, 144–164. https://doi.org/10.1016/j.jmgm.2018.11.017
  • De Araújo Santos, R. A., Braz, C. A., Ghasemi, J. B., Safavi-Sohi, R., & Barbosa, E. G. (2015). Mixed 2D-3D-LQTA-QSAR study of a series of Plasmodium falciparum dUTPase inhibitors. Medicinal Chemistry Research, 24(3), 1098–1111. https://doi.org/10.1007/s00044-014-1189-4
  • De Campos, L. J., & De Melo, E. B. (2014). Modeling structure-activity relationships of prodiginines with antimalarial activity using GA/MLR and OPS/PLS. Journal of Molecular Graphics and Modelling, 54, 19–31. https://doi.org/10.1016/j.jmgm.2014.08.004
  • De Sousa, A. C. C., Diaz, N. C., De Souza, A. M. T., Cabral, L. M., Castro, H. C., Albuquerque, M. G., & Rodrigues, C. R. (2015). Molecular modeling study of a series of amodiaquine analogues with antimalarial activity. Medicinal Chemistry Research, 24(9), 3529–3536. https://doi.org/10.1007/s00044-015-1403-z
  • Desai, P. V., & Avery, M. A. (2004). Structural characterization of vivapain-2 and vivapain-3, cysteine proteases from Plasmodium vivax: Comparative protein modeling and docking studies. Journal of Biomolecular Structure & Dynamics, 21(6), 781–790. https://doi.org/10.1080/07391102.2004.10506968
  • Divakar, S., & Hariharan, S. (2015). 3D-QSAR studies on plasmodium falciparam proteins: A mini-review. Combinatorial Chemistry & High Throughput Screening, 18(2), 188–198. https://doi.org/10.2174/1386207318666141229124747
  • Divatia, S., Chhabaria, M. T., Parmar, K., & Patel, H. (2016). QSAR study of benzimidazole-hydrazine carbothioamide derivatives as potent anti-malarial agents against Plasmodium falciparum. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 55B, 486–491.
  • Dohutia, C., Chetia, D., Gogoi, K., Bhattacharyya, D. R., & Sarma, K. (2017). Molecular docking, synthesis and in vitro antimalarial evaluation of certain novel curcumin analogues. Brazilian Journal of Pharmaceutical Sciences, 53(4), e00084.
  • Dube, P. N., Mokale, S., & Datar, P. (2014). CoMFA and docking study of 2,N6-disubstituted 1,2-dihydro-1,3,5-triazine-4,6-diamines as novel PfDHFR enzyme inhibitors for antimalarial activity. Bulletin of Faculty of Pharmacy, Cairo University, 52(1), 125–134. https://doi.org/10.1016/j.bfopcu.2014.02.003
  • Dudek, A., Arodz, T., & Galvez, J. (2006). Computational methods in developing quantitative structure-activity relationships (QSAR): A review. Combinatorial Chemistry & High Throughput Screening, 9(3), 213–228. https://doi.org/10.2174/138620706776055539
  • Egan, T. J. (2003). Haemozoin (malaria pigment): A unique crystalline drug target. Targets, 2(3), 115–124. https://doi.org/10.1016/S1477-3627(03)02310-9
  • Fan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z., & Feng, L. S. (2018). Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. European Journal of Medicinal Chemistry, 146, 1–14. https://doi.org/10.1016/j.ejmech.2018.01.039
  • Goble, J., Adendorff, M., de Beer, T., Stephens, L., & Blatch, G. (2010). The Malarial Drug Target Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR): Development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening). Protein and Peptide Letters, 17(1), 109–120. https://doi.org/10.2174/092986610789909548
  • Goodarzi, M., Dejaegher, B., & Vander Heyden, Y. (2012). Feature selection methods in QSAR studies. Journal of AOAC International, 95(3), 636–651. https://doi.org/10.5740/jaoacint.sge_goodarzi
  • Goodman, C. D., Mollard, V., Louie, T., Holloway, G. A., Watson, K. G., & McFadden, G. I. (2014). Apicoplast acetyl Co-A carboxylase of the human malaria parasite is not targeted by cyclohexanedione herbicides. International Journal for Parasitology, 44(5), 285–289. https://doi.org/10.1016/j.ijpara.2014.01.007
  • Greenwood, B. M., Fidock, D. A., Kyle, D. E., Kappe, S. H. I., Alonso, P. L., Collins, F. H., & Duffy, P. E. (2008). Malaria: Progress, perils, and prospects for eradication Find the latest version: Review series Malaria: Progress, perils, and prospects for eradication. Journal of Clinical Investigation, 118(4), 1266–1276. https://doi.org/10.1172/JCI33996
  • Gupta, M. K. (2013). CP-MLR/PLS-directed QSAR studies on the antimalarial activity and cytotoxicity of substituted 4-aminoquinolines. Medicinal Chemistry Research, 22(7), 3497–3509. https://doi.org/10.1007/s00044-012-0344-z
  • Gupta, A. K., & Saxena, A. K. (2013). Triple-layered QSAR studies on substituted 1,2,4-trioxanes as potential antimalarial agents: Superiority of the quantitative pharmacophore-based alignment over common substructure-based alignment. SAR and QSAR in Environmental Research, 24(2), 119–134. https://doi.org/10.1080/1062936X.2012.742136
  • H., Duarte, M., J., Barigye, S., P., & Freitas, M. (2015). Exploring MIA-QSARs' for antimalarial quinolon-4(1H)-imines . Combinatorial Chemistry & High Throughput Screening, 18(2), 208–216. https://doi.org/10.2174/1386207318666141229123349
  • Ha, Y. R., Hwang, B. G., Hong, Y., Yang, H. W., & Lee, S. J. (2015). Effect of farnesyltransferase inhibitor R115777 on mitochondria of Plasmodium falciparum. The Korean Journal of Parasitology, 53(4), 421–430. https://doi.org/10.3347/kjp.2015.53.4.421
  • Hadni, H., & Elhallaoui, M. (2019). Molecular docking and QSAR studies for modeling the antimalarial activity of hybrids 4-anilinoquinoline-triazines derivatives with the wild-type and mutant receptor pf-DHFR. Heliyon, 5(8), e02357. https://doi.org/10.1016/j.heliyon.2019.e02357
  • Hadni, H., & Elhallaoui, M. (2020a). 2D and 3D-QSAR, molecular docking and ADMET properties: In silico studies of azaaurones as antimalarial agents. New Journal of Chemistry, 44(16), 6553–6565. https://doi.org/10.1039/C9NJ05767F
  • Hadni, H., & Elhallaoui, M. (2020b). 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon, 6(4), e03580. https://doi.org/10.1016/j.heliyon.2020.e03580
  • Hou, X., Chen, X., Zhang, M., & Yan, A. (2016). QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. SAR and QSAR in Environmental Research, 27(2), 101–124. https://doi.org/10.1080/1062936X.2015.1134652
  • Hu, Y.-Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.-S., Wu, X., & Zhao, F. (2017). Quinoline hybrids and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 139, 22–47. https://doi.org/10.1016/j.ejmech.2017.07.061
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., & Hassan, A. M. A. (2019). Identification of novel Plasmodium falciparum PI4KB inhibitors as potential anti-malarial drugs: Homology modeling, molecular docking and molecular dynamics simulations. Computational Biology and Chemistry, 80(March), 79–89. https://doi.org/10.1016/j.compbiolchem.2019.03.010
  • Inthajak, K., Toochinda, P., & Lawtrakul, L. (2018). Application of molecular docking and PSO-SVR intelligent approaches in antimalarial activity prediction of enantiomeric cycloguanil analogues. SAR and QSAR in Environmental Research, 29(12), 957–974. https://doi.org/10.1080/1062936X.2018.1536678
  • Jiménez Villalobos, T. P., Gaitán Ibarra, R., & Montalvo Acosta, J. J. (2013). 2D, 3D-QSAR and molecular docking of 4(1H)-quinolones analogues with antimalarial activities. Journal of Molecular Graphics & Modelling, 46, 105–124. https://doi.org/10.1016/j.jmgm.2013.10.002
  • Joët, T., & Krishna, S. (2004). The hexose transporter of Plasmodium falciparum is a worthy drug target. Acta Tropica, 89(3), 371–374. https://doi.org/10.1016/j.actatropica.2003.11.003
  • Joët, T., Morin, C., Fischbarg, J., Louw, A. I., Eckstein-Ludwig, U., Woodrow, C., & Krishna, S. (2003). Why is the Plasmodium falciparum hexose transporter a promising new drug target? Expert Opinion on Therapeutic Targets, 7(5), 593–602. https://doi.org/10.1517/14728222.7.5.593
  • Jones, R. A., Panda, S. S., & Hall, C. D. (2015). Quinine conjugates and quinine analogues as potential antimalarial agents. European Journal of Medicinal Chemistry, 97(1), 335–355. https://doi.org/10.1016/j.ejmech.2015.02.002
  • K Sharma, B., Verma, S., & S Prabhakar, Y. (2013). Topological and Physicochemical Characteristics of 1,2,3,4-Tetrahydroacridin- 9(10H)-ones and their antimalarial profiles: A composite insight to the structure-activity relation . Current Computer-Aided Drug Design, 9(3), 317–335. https://doi.org/10.2174/15734099113099990017
  • Kagami, L. P., das Neves, G. M., Rodrigues, R. P., da Silva, V. B., Eifler-Lima, V. L., & Kawano, D. F. (2017). Identification of a novel putative inhibitor of the Plasmodium falciparum purine nucleoside phosphorylase: Exploring the purine salvage pathway to design new antimalarial drugs. Molecular Diversity, 21(3), 677–695. https://doi.org/10.1007/s11030-017-9745-8
  • Kakiuchi, K., Tanimoto, H., Fadilah, F., Arsianti, A. A., Bahtiar, A., & Astuty, H. (2017). Design and screening of gallic acid derivatives as inhibitors of malarial dihydrofolate reductase (Dhfr) by in silico docking. Asian Journal of Pharmaceutical and Clinical Research, 10(2), 330.
  • Kalani, K., Agarwal, J., Alam, S., Khan, F., Pal, A., & Srivastava, S. K. (2013). In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra. PLoS One, 8(9), e74761. https://doi.org/10.1371/journal.pone.0074761
  • Kalaria, P. N., Karad, S. C., & Raval, D. K. (2018). A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. European Journal of Medicinal Chemistry, 158, 917–936. https://doi.org/10.1016/j.ejmech.2018.08.040
  • Kalra, S., Joshi, G., Kumar, R., & Munshi, A. (2018). Role of 2-dimensional autocorrelation descriptors in predicting antimalarial activity of artemisinin and its aanalogues: A QSAR study. Current Topics in Medicinal Chemistry, 18(31), 2720–2730. https://doi.org/10.2174/1568026619666190119143838
  • Kamaria, P., & Kawathekar, N. (2014). Ligand-based 3D-QSAR analysis and virtual screening in exploration of new scaffolds as Plasmodium falciparum glutathione reductase inhibitors. Medicinal Chemistry Research, 23(1), 25–33. https://doi.org/10.1007/s00044-013-0603-7
  • Kaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229–3256. https://doi.org/10.1016/j.bmc.2009.02.050
  • Kaur, K., Jain, M., Reddy, R. P., & Jain, R. (2010). Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry, 45(8), 3245–3264. https://doi.org/10.1016/j.ejmech.2010.04.011
  • Kavishe, R. A., Koenderink, J. B., & Alifrangis, M. (2017). Oxidative stress in malaria and artemisinin combination therapy: Pros and Cons. The FEBS Journal, 284(16), 2579–2591. https://doi.org/10.1111/febs.14097
  • Keough, D. T., Hocková, D., Holý, A., Naesens, L. M. J., Skinner-Adams, T. S., De Jersey, J., & Guddat, L. W. (2009). Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: A new class of antimalarial therapeutics. Journal of Medicinal Chemistry, 52(14), 4391–4399. https://doi.org/10.1021/jm900267n
  • Khosya, S., Meena, R., & Meena, H. (2012). Study of total serum lactate dehydrogenase activity as an indirect evidence of acute Plasmodium falciparum infection. In Vitro, 1(2), 1–3.
  • Kimura, M., Yamaguchi, Y., Takada, S., & Tanabe, K. (1993). Cloning of a Ca2+-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca2+-ATPases. Journal of Cell Science, 104(4), 1129–1136. https://doi.org/10.1242/jcs.104.4.1129
  • Krovat, E., Steindl, T., & Langer, T. (2005). Recent advances in docking and scoring. Current Computer Aided-Drug Design, 1(1), 93–102. https://doi.org/10.2174/1573409052952314
  • Krungkrai, J., Krungkrai, S. R., Suraveratum, N., & Prapunwattana, P. (1997). Mitochondrial ubiquinol-cytochrome c reductase and cytochrome c oxidase: Chemotherapeutic targets in malarial parasites. Biochemistry and Molecular Biology International, 42(5), 1007–1014. https://doi.org/10.1080/15216549700203461
  • Kumar Behera, S., Panda, A., Rana, M., & Singh Bisht, S. (2016). Molecular docking studies and in - silico computational analysis of analogs of anti - malarial drugs Pf Plasmodium falciarum TS - DHFR thymidylate synthase dihydrofolate reductase SMILES simplified molecular input line entry specification CASTp computed A. Journal of Chemical Engineering and Chemistry Research, 3(11), 1085–1090.
  • Kumar, S., Bhardwaj, T. R., Prasad, D. N., & Singh, R. K. (2018). Drug targets for resistant malaria: Historic to future perspectives. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 104(April), 8–27. https://doi.org/10.1016/j.biopha.2018.05.009
  • Kumari, M., Chandra, S., Tiwari, N., & Subbarao, N. (2016). 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. BMC Structural Biology, 16(1), 1–11. https://doi.org/10.1186/s12900-016-0063-7
  • Kumar, D., Khan, S. I., Tekwani, B. L., Ponnan, P., & Rawat, D. S. (2015). 4-Aminoquinoline-Pyrimidine hybrids: Synthesis, antimalarial activity, heme binding and docking studies. European Journal of Medicinal Chemistry, 7(89), 490–502.
  • Kumar, S., Kumar, M., Ekka, R., Dvorin, J. D., Paul, A. S., Madugundu, A. K., Gilberger, T., Gowda, H., Duraisingh, M. T., Keshava Prasad, T. S., & Sharma, P. (2017). PfCDPK1 mediated signaling in erythrocytic stages of Plasmodium falciparum. Nature Communications, 8(1), 63. https://doi.org/10.1038/s41467-017-00053-1
  • Kumawat, M. K. (2017). Thiazole containing heterocycles with antimalarial activity. Current Drug Discovery Technologies, 14, 196–200.
  • Lamptey, H., Ofori, M. F., Kusi, K. A., Adu, B., Owusu-Yeboa, E., Kyei-Baafour, E., Arku, A. T., Bosomprah, S., Alifrangis, M., & Quakyi, I. A. (2018). The prevalence of submicroscopic Plasmodium falciparum gametocyte carriage and multiplicity of infection in children, pregnant women and adults in a low malaria transmission area in Southern Ghana 11 Medical and Health Sciences 1108 Medical Microbiology 1. Malaria Journal, 17(1), 1–12. https://doi.org/10.1186/s12936-018-2479-y
  • Lee, P. J., Bhonsle, J. B., Gaona, H. W., Huddler, D. P., Heady, T. N., Kreishman-Deitrick, M., Bhattacharjee, A., McCalmont, W. F., Gerena, L., Lopez-Sanchez, M., Roncal, N. E., Hudson, T. H., Johnson, J. D., Prigge, S. T., & Waters, N. C. (2009). Targeting the fatty acid biosynthesis enzyme, beta-ketoacyl-acyl carrier protein synthase III (PfKASIII), in the identification of novel antimalarial agents . Journal of Medicinal Chemistry, 52(4), 952–963. https://doi.org/10.1021/jm8008103
  • Leeza Zaidi, S., Agarwal, S. M., Chavalitshewinkoon-Petmitr, P., Suksangpleng, T., Ahmad, K., Avecilla, F., & Azam, A. (2016). Thienopyrimidine sulphonamide hybrids: Design, synthesis, antiprotozoal activity and molecular docking studies. RSC Advances, 6(93), 90371–90383. https://doi.org/10.1039/C6RA15181G
  • Li, J., Li, S., Bai, C., Liu, H., & Gramatica, P. (2013). Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis. Journal of Molecular Graphics & Modelling, 44, 266–277. https://doi.org/10.1016/j.jmgm.2013.07.004
  • Lindert, S., Tallorin, L., Nguyen, Q. G., Burkart, M. D., & McCammon, J. A. (2015). In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors. Journal of Computer-Aided Molecular Design, 29(1), 79–87. https://doi.org/10.1007/s10822-014-9806-3
  • Luan, F., Xu, X., Dias, M. N., Cordeiro, S., Liu, H., & Zhang, X. (2013). QSAR modeling for the antimalarial activity of 1,4-naphthoquinonyl derivatives as potential antimalarial agents. Current Computer-Aided Drug Design, 9(1), 95–107.
  • Madrid, D. C., Ting, L. M., Waller, K. L., Schramm, V. L., & Kim, K. (2008). Plasmodium falciparum purine nucleoside phosphorylase is critical for viability of malaria parasites. Journal of Biological Chemistry, 283(51), 35899–35907. https://doi.org/10.1074/jbc.M807218200
  • Mahajan, D. T., Masand, V. H., Patil, K. N., Hadda, T. B., & Rastija, V. (2013). Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi drug resistant strain. Medicinal Chemistry Research, 22(5), 2284–2292. https://doi.org/10.1007/s00044-012-0223-7
  • Mahmud, A. W., Shallangwa, G. A., & Uzairu, A. (2020). QSAR and molecular docking studies of 1,3-dioxoisoindoline-4-aminoquinolines as potent antiplasmodium hybrid compounds. Heliyon, 6(3), e03449. https://doi.org/10.1016/j.heliyon.2020.e03449
  • Makam, P., Thakur, P. K., & Kannan, T. (2014). In vitro and in silico antimalarial activity of 2-(2-hydrazinyl)thiazole derivatives. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 52(14), 138–145. https://doi.org/10.1016/j.ejps.2013.11.001
  • Manhas, A., Kumar, S., Kumar, P., & Jha, P. C. (2016). Molecular modeling of Plasmodium falciparum peptide deformylase and structure-based pharmacophore screening for inhibitors†. RSC Advances, 6(35), 29466–29485. https://doi.org/10.1039/C6RA01071G
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2017). Multicomplex-based pharmacophore modeling coupled with molecular dynamics simulations: An efficient strategy for the identification of novel inhibitors of PfDHODH. Journal of Molecular Graphics and Modelling, 13, 413–423.
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2019a). In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: A multicomplex-based approach. Molecular Diversity, 23(2), 453–470. https://doi.org/10.1007/s11030-018-9885-5
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2019b). Multicomplex-based pharmacophore modeling in conjunction with multi-target docking and molecular dynamics simulations for the identification of PfDHFR inhibitors. Journal of Biomolecular Structure & Dynamics, 37(16), 4181–4199. https://doi.org/10.1080/07391102.2018.1540362
  • Masand, V. H., Mahajan, D. T., Gramatica, P., & Barlow, J. (2014). Tautomerism and multiple modelling enhance the efficacy of QSAR: Antimalarial activity of phosphoramidate and phosphorothioamidate analogues of amiprophos methyl. Medicinal Chemistry Research, 23(11), 4825–4835. https://doi.org/10.1007/s00044-014-1043-8
  • McNamara, C. W., Lee, M. C., Lim, C. S., Lim, S. H., Roland, J., Simon, O., Yeung, B. K., Chatterjee, A. K., McCormack, S. L., Manary, M. J., Zeeman, A.-M., Dechering, K. J., Kumar, T. S., Henrich, P. P., Gagaring, K., Ibanez, M., Kato, N., Kuhen, K. L., Fischli, C., … Winzeler, E. A. (2013). Targeting plasmodium PI(4)K to eliminate malaria. Nature, 504(7479), 248–253. https://doi.org/10.1038/nature12782
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2012). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.
  • Mishra, M., Agarwal, S., Dixit, A., Mishra, V. K., Kashaw, V., Agrawal, R. K., & Kashaw, S. K. (2020). Integrated computational investigation to develop molecular design of quinazoline scaffold as promising inhibitors of plasmodium lactate dehydrogenase. Journal of Molecular Structure, 1207, 127808. https://doi.org/10.1016/j.molstruc.2020.127808
  • Mishra, M., Mishra, V. K., Kashaw, V., Iyer, A. K., & Kashaw, S. K. (2017). Comprehensive review on various strategies for antimalarial drug discovery. European Journal of Medicinal Chemistry, 125, 1300–1320. https://doi.org/10.1016/j.ejmech.2016.11.025
  • Mishra, R., Mishra, B., & Moorthy, N. H. (2005). Dihydrofolate reductase enzyme: A potent target for antimalarial research. Asian Journal of Cell Biology, 1(1), 48–58. https://doi.org/10.3923/ajcb.2006.48.58
  • Mishra, M., Mishra, V. K., Senger, P., Pathak, A. K., & Kashaw, S. K. (2014). Exploring QSAR studies on 4-substituted quinazoline derivatives as antimalarial compounds for the development of predictive models. Medicinal Chemistry Research, 23(3), 1397–1405. https://doi.org/10.1007/s00044-013-0744-8
  • Mueller, I., Zimmerman, P. A., & Reeder, J. C. (2007). Plasmodium malariae and Plasmodium ovale - the “bashful” malaria parasites. Trends in Parasitology, 23(6), 278–283. https://doi.org/10.1016/j.pt.2007.04.009
  • Narula, A. K., Azad, C. S., & Nainwal, L. M. (2019). New dimensions in the field of antimalarial research against malaria resurgence. European Journal of Medicinal Chemistry, 181, 111353. https://doi.org/10.1016/j.ejmech.2019.05.043
  • Neves, B. J., Bueno, R. V., Braga, R. C., & Andrade, C. H. (2013). Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. Bioorganic & Medicinal Chemistry Letters, 23(8), 2436–2441. https://doi.org/10.1016/j.bmcl.2013.02.006
  • Nicoleti, N. H., Batagin-Neto, A., & Lavarda, F. C. (2016). Electronic descriptors for the antimalarial activity of sulfonamides. Medicinal Chemistry Research, 25(8), 1630–1638. https://doi.org/10.1007/s00044-016-1596-9
  • Ojha, P., & Roy, K. (2013). First report on exploring structural requirements of 1,2,3,4- tetrahydroacridin-9(10H)-one analogs as antimalarials using multiple QSAR approaches: Descriptor-based QSAR, CoMFA-CoMSIA 3DQSAR, HQSAR and G-QSAR approaches. Combinatorial Chemistry & High Throughput Screening, 16(1), 7–21. https://doi.org/10.1016/j.tiv.2012.10.015
  • Ojha, P., & Roy, K. (2015). The current status of antimalarial drug research with special reference to application of QSAR models. Combinatorial Chemistry & High Throughput Screening, 18(2), 91–128. https://doi.org/10.2174/1386207318666141229125527
  • Oliveira, R., Miranda, D., Magalhães, J., Capela, R., Perry, M. J., O'Neill, P. M., Moreira, R., & Lopes, F. (2015). From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorganic & Medicinal Chemistry, 23(16), 5120–5130. https://doi.org/10.1016/j.bmc.2015.04.017
  • Olson, J. A., Terryn, R. J., Stewart, E. L., Baum, J. C., & Novak, M. J. (2018). New insight into the action of tryptanthrins against Plasmodium falciparum: Pharmacophore identification via a novel submolecular QSAR descriptor. Journal of Molecular Graphics and Modelling, 80, 138–146. https://doi.org/10.1016/j.jmgm.2017.12.013
  • Parihar, N., & Nandi, S. (2015). In-silico combinatorial design and pharmacophore modeling of potent antimalarial 4-anilinoquinolines utilizing QSAR and computed descriptors. SpringerPlus, 4(1), 1–20. https://doi.org/10.1186/s40064-015-1593-3
  • Patel, P., Parmar, K., Vyas, V. K., Patel, D., & Das, M. (2017). Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation. Journal of Molecular Graphics & Modelling, 77, 295–310. https://doi.org/10.1016/j.jmgm.2017.09.004
  • Pavadai, E., El Mazouni, F., Wittlin, S., De Kock, C., Phillips, M. A., & Chibale, K. (2016). Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. Journal of Chemical Information and Modeling, 56(3), 548–562. https://doi.org/10.1021/acs.jcim.5b00680
  • Peng, Y., Keenan, S. M., & Welsh, W. J. (2005). Structural model of the Plasmodium CDK, Pfmrk, a novel target for malaria therapeutics. Journal of Molecular Graphics & Modelling, 24(1), 72–80. https://doi.org/10.1016/j.jmgm.2005.06.002
  • Pingaew, R., Saekee, A., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2014). Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. European Journal of Medicinal Chemistry, 85(6), 65–76. https://doi.org/10.1016/j.ejmech.2014.07.087
  • Pornthanakasem, W., Riangrungroj, P., Chitnumsub, P., Ittarat, W., Kongkasuriyachai, D., Uthaipibull, C., Yuthavong, Y., & Leartsakulpanich, U. (2016). Role of Plasmodium vivax dihydropteroate synthase polymorphisms in sulfa drug resistance. Antimicrobial Agents and Chemotherapy, 60(8), 4453–4463. https://doi.org/10.1128/AAC.01835-15
  • Qin, H. L., Zhang, Z. W., Lekkala, R., Alsulami, H., & Rakesh, K. P. (2020). Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. European Journal of Medicinal Chemistry, 193, 112215. https://doi.org/10.1016/j.ejmech.2020.112215
  • Rampogu, S. (2015). Role of quassinoids as potential antimalarial agents: An in silico approach. Ancient Science of Life, 35(2), 85–89. https://doi.org/10.4103/0257-7941.171676
  • Rana, D., Kalamuddin, M., Sundriyal, S., Jaiswal, V., Sharma, G., Das Sarma, K., Sijwali, P. S., Mohmmed, A., Malhotra, P., & Mahindroo, N. (2020). Identification of antimalarial leads with dual falcipain-2 and falcipain-3 inhibitory activity. Bioorganic & Medicinal Chemistry, 28(1), 115155. https://doi.org/10.1016/j.bmc.2019.115155
  • Rosenthal, P. J. (2004). Cysteine proteases of malaria parasites. International Journal for Parasitology, 34(13–14), 1489–1499. https://doi.org/10.1016/j.ijpara.2004.10.003
  • Rout, S., & Mahapatra, R. K. (2019). In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Bioorganic & Medicinal Chemistry, 27(12), 2553–2571. https://doi.org/10.1016/j.bmc.2019.03.039
  • Roy, K. (2015). Editorial (thematic issue: Application of chemometrics and cheminformatics in antimalarial drug research). Combinatorial Chemistry & High Throughput Screening, 18(2), 89–90. https://doi.org/10.2174/138620731802150215154014
  • Roy, K., & Ojha, P. K. (2010). Advances in quantitative structureactivity relationship models of antimalarials. Expert Opinion on Drug Discovery Expert Opinion on Drug Discovery, 5(8), 751–778.
  • Saddala, M. S., & Adi, P. J. (2018). Discovery of small molecules through pharmacophore modeling, docking and molecular dynamics simulation against Plasmodium vivax Vivapain-3 (VP-3). Heliyon, 4(5), e00612. https://doi.org/10.1016/j.heliyon.2018.e00612
  • Saghaie, L., Sakhi, H., Sabzyan, H., Shahlaei, M., & Shamshirian, D. (2013). Stepwise MLR and PCR QSAR study of the pharmaceutical activities of antimalarial 3-hydroxypyridinone agents using B3LYP/6-311++G* *descriptors. Medicinal Chemistry Research, 22(4), 1679–1688. https://doi.org/10.1007/s00044-012-0152-5
  • Sahu, N. K., V., & Kohli, D. (2012). Structural insight for imidazopyridazines as malarial kinase PfPK7 inhibitors using QSAR techniques. Medicinal Chemistry (Shariqah (United Arab Emirates)), 8(4), 636–648. https://doi.org/10.2174/157340612801216300
  • Sahu, N. K., Sharma, M. C., Mourya, V., & Kohli, D. V. (2014). QSAR studies of some side chain modified 7-chloro-4-aminoquinolines as antimalarial agents. Arabian Journal of Chemistry, 7(5), 701–707. https://doi.org/10.1016/j.arabjc.2010.12.005
  • Sainy, J., & Sharma, R. (2015). QSAR analysis of thiolactone derivatives using HQSAR, CoMFA and CoMSIA. SAR and QSAR in Environmental Research, 26(10), 873–892. https://doi.org/10.1080/1062936X.2015.1095238
  • Sarma, G. N., Savvides, S. N., Becker, K., Schirmer, M., Schirmer, R. H., & Karplus, P. A. (2003). Glutathione reductase of the malarial parasite Plasmodium falciparum: Crystal structure and inhibitor development. Journal of Molecular Biology, 328(4), 893–907. https://doi.org/10.1016/S0022-2836(03)00347-4
  • Saxena, S., Durgam, L., & Guruprasad, L. (2019). Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). Journal of Biomolecular Structure & Dynamics, 37(7), 1783–1799. https://doi.org/10.1080/07391102.2018.1471417
  • Shah, P., Kumar, S., Tiwari, S., & Siddiqi, M. I. (2012). 3D-QSAR studies of triazolopyrimidine derivatives of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors using a combination of molecular dynamics, docking, and genetic algorithm-based methods. Journal of Chemical Biology, 5(3), 91–103. https://doi.org/10.1007/s12154-012-0072-3
  • Shah, P., Tiwari, S., & Siddiqi, M. I. (2014). Integrating molecular docking, CoMFA analysis, and machine- learning classification with virtual screening toward identification of novel scaffolds as Plasmodium falciparum enoyl acyl carrier protein reductase inhibitor. Medicinal Chemistry Research, 23(7), 3308–3326. https://doi.org/10.1007/s00044-014-0910-7
  • Sharma, S. K., Kapoor, M., Ramya, T. N. C., Kumar, S., Kumar, G., Modak, R., Sharma, S., Surolia, N., & Surolia, A. (2003). Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) ). The Journal of Biological Chemistry, 278(46), 45661–45671. https://doi.org/10.1074/jbc.M304283200
  • Sharma, R., & Patil, S. (2013). Three dimensional quantitative structure analysis substituted 1, 3-diaryl propenone derivatives as antimalarial activity. Der Pharma Chemica, 5(4), 80–86.
  • Sharma, M., & Prasher, P. (2020). An epigrammatic status of the 'azole'-based antimalarial drugs . RSC Medicinal Chemistry, 11(2), 184–211. https://doi.org/10.1039/c9md00479c
  • Sharma, M. C., Sharma, S., & Bhadoriya, K. S. (2015). Molecular modeling studies on substituted aminopyrimidines derivatives as potential antimalarial compounds. Medicinal Chemistry Research, 24(3), 1272–1288. https://doi.org/10.1007/s00044-014-1199-2
  • Sharma, M. C., Sharma, S., Sharma, P., & Kumar, A. (2014). Pharmacophore and QSAR modeling of some structurally diverse azaaurones derivatives as anti-malarial activity. Medicinal Chemistry Research, 23(1), 181–198. https://doi.org/10.1007/s00044-013-0609-1
  • Shehu, Z., Uzairu, A., & Sagagi, B. (2018). Quantitative structure-activity relationship and molecular docking study of some pyrrolones antimalarial agents against Plasmodium falciparum. Journal of the Turkish Chemical Society Section A: Chemistry, 5(2), 569–584.
  • Shibi, I. G., Aswathy, L., Jisha, R. S., Masand, V. H., Divyachandran, A., & Gajbhiye, J. M. (2015). Molecular docking and QSAR analyses for understanding the antimalarial activity of some 7-substituted-4-aminoquinoline derivatives. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 77, 9–23. https://doi.org/10.1016/j.ejps.2015.05.025
  • Singh, S. (2015). Computational design and chemometric QSAR modeling of Plasmodium falciparum carbonic anhydrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(1), 133–141. https://doi.org/10.1016/j.bmcl.2014.10.089
  • Singh, Balbir, Sung, L. K., Matusop, A., Radhakrishnan, A., Shamsul, S. S. G., Cox-Singh, J., & Thomas, A. (2003). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet, 362(9394), 1017–1024.
  • Singh, A., Maqbool, M., Mobashir, M., & Hoda, N. (2017). Dihydroorotate dehydrogenase: A drug target for the development of antimalarials. European Journal of Medicinal Chemistry, 125, 640–651. https://doi.org/10.1016/j.ejmech.2016.09.085
  • Singh, B., Vishwakarma, R. A., & Bharate, S. B. (2013). QSAR and pharmacophore modeling of natural and synthetic antimalarial prodiginines. Current Computer-Aided Drug Design, 9(3), 350–359. https://doi.org/10.2174/15734099113099990020
  • Sivaramakrishnan, M., Kandaswamy, K., Natesan, S., Devarajan, R. D., Ramakrishnan, S. G., & Kothandan, R. (2020). Molecular docking and dynamics studies on plasmepsin V of malarial parasite Plasmodium vivax. Informatics in Medicine Unlocked, 19, 100331. https://doi.org/10.1016/j.imu.2020.100331
  • Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 10(434), 214–227.
  • Spicer, T., Fernandez-Vega, V., Chase, P., Scampavia, L., To, J., Dalton, J. P., Da Silva, F. L., Skinner-Adams, T. S., Gardiner, D. L., Trenholme, K. R., Brown, C. L., Ghosh, P., Porubsky, P., Wang, J. L., Whipple, D. A., Schoenen, F. J., & Hodder, P. (2014). Identification of potent and selective inhibitors of the Plasmodium falciparum M18 aspartyl aminopeptidase (PfM18AAP) of human malaria via high-throughput screening. Journal of Biomolecular Screening, 19(7), 1107–1115. https://doi.org/10.1177/1087057114525852
  • Srivastava, P., Puri, S. K., Kamboj, K. K., & Pandey, V. C. (1999). Glutathione-S-transferase activity in malarial parasites. Tropical Medicine & International Health : TM & IH, 4(4), 251–254. https://doi.org/10.1046/j.1365-3156.1999.00387.x
  • Sutherland, C. J., Tanomsing, N., Nolder, D., Oguike, M., Jennison, C., Pukrittayakamee, S., Dolecek, C., Hien, T. T., do Rosário, V. E., Arez, A. P., Pinto, J., Michon, P., Escalante, A. A., Nosten, F., Burke, M., Lee, R., Blaze, M., Otto, T. D., Barnwell, J. W., … Polley, S. D. (2010). Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. The Journal of Infectious Diseases, 201(10), 1544–1550. https://doi.org/10.1086/652240
  • Tallorin, L. C., Durrant, J. D., Nguyen, Q. G., McCammon, J. A., & Burkart, M. D. (2014). Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase. Bioorganic & Medicinal Chemistry, 22(21), 6053–6061. https://doi.org/10.1016/j.bmc.2014.09.002
  • Tarnchompoo, B., Chitnumsub, P., Jaruwat, A., Shaw, P. J., Vanichtanankul, J., Poen, S., Rattanajak, R., Wongsombat, C., Tonsomboon, A., Decharuangsilp, S., Anukunwithaya, T., Arwon, U., Kamchonwongpaisan, S., & Yuthavong, Y. (2018). Hybrid inhibitors of malarial dihydrofolate reductase with dual binding modes that can forestall resistance. ACS Medicinal Chemistry Letters, 9(12), 1235–1240. https://doi.org/10.1021/acsmedchemlett.8b00389
  • Tegar, M., & Purnomo, H. (2013). Tea leaves extracted as anti-malaria based on molecular docking PLANTS. Procedia Environmental Sciences, 17, 188–194. https://doi.org/10.1016/j.proenv.2013.02.028
  • Thakkar, S. S., Thakor, P., Ray, A., Doshi, H., & Thakkar, V. R. (2017). Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorganic & Medicinal Chemistry, 25(20), 5396–5406. https://doi.org/10.1016/j.bmc.2017.07.057
  • Thillainayagam, M., Pandian, L., Murugan, K. K., Vijayakumar, V., Sundaramoorthy, S., Anbarasu, A., & Ramaiah, S. (2015). In silico analysis reveals the anti-malarial potential of quinolinyl chalcone derivatives. Journal of Biomolecular Structure & Dynamics, 33(5), 961–977. https://doi.org/10.1080/07391102.2014.920277
  • Tibon, N. S., Ng, C. H., & Cheong, S. L. (2020). Current progress in antimalarial pharmacotherapy and multi-target drug discovery. European Journal of Medicinal Chemistry, 188, 111983. https://doi.org/10.1016/j.ejmech.2019.111983
  • Tseng, T. S., Lee, Y. C., Hsiao, N. W., Liu, Y. R., & Tsai, K. C. (2016). Comparative study between 3D-QSAR and Docking-Based Pharmacophore models for potent Plasomodium falciparum dihydroorotate dehydrogenase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(2), 265–271. https://doi.org/10.1016/j.bmcl.2015.12.043
  • Tuteja, R. (2007). Malaria - An overview. The FEBS Journal, 274(18), 4670–4679. https://doi.org/10.1111/j.1742-4658.2007.05997.x
  • van Brummelen, A. C., Olszewski, K. L., Wilinski, D., Llinás, M., Louw, A. I., & Birkholtz, L.-M. (2009). Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. The Journal of Biological Chemistry, 284(7), 4635–4646. https://doi.org/10.1074/jbc.M807085200
  • Vandekerckhove, S., & D'hooghe, M. (2015). Quinoline-based antimalarial hybrid compounds. Bioorganic & Medicinal Chemistry, 23(16), 5098–5119. https://doi.org/10.1016/j.bmc.2014.12.018
  • Velanker, S. S., Ray, S. S., Gokhale, R. S., Suma, S., Balaram, H., Balaram, P., & Murthy, M. R. N. (1997). Triosephosphate isomerase from Plasmodium falciparum: The crystal structure provides insights into antimalarial drug design. Structure (London, England : 1993), 5(6), 751–761. https://doi.org/10.1016/S0969-2126(97)00230-X
  • Verma, J., Khedkar, V. M., & Coutinho, E. C. (2010). 3D-QSAR in drug design-a review. Current Topics in Medicinal Chemistry, 10(1), 95–115. https://doi.org/10.2174/156802610790232260
  • Vyas, V. K., & Ghate, M. (2011). Recent developments in the medicinal chemistry and therapeutic poten- tial of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini-Reviews in Medicinal Chemistry, 11(12), 1039–1055. https://doi.org/10.2174/138955711797247707
  • Vyas, V. K., Parikh, H., & Ghate, M. (2013). 3D QSAR studies on 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2- carboxamide derivatives as P. falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Medicinal Chemistry Research, 22(5), 2235–2243. https://doi.org/10.1007/s00044-012-0216-6
  • Vyas, V. K., Qureshi, G., Dayani, H., Jha, A., Ghate, M., Qureshi, G., Dayani, H., Jha, A., & Ghate, M. (2020). Pharmacophore-based identification and in vitro validation of apoptosis inducers as anticancer agents. SAR and QSAR in Environmental Research, 31(11), 869–882. https://doi.org/10.1080/1062936X.2020.1827030
  • Vyas, V. K., Qureshi, G., Ghate, M., Patel, H., & Dalai, S. (2016). Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity. SAR and QSAR in Environmental Research, 27(6), 427–440. https://doi.org/10.1080/1062936X.2016.1189959
  • Wadood, A., Ghufran, M., Hassan, S. F., Khan, H., Azam, S. S., & Rashid, U. (2017). In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy-D-xylulose 5-phosphate reductoisomerase for treatment of falciparum malaria. Pharmaceutical Biology, 55(1), 19–32. https://doi.org/10.1080/13880209.2016.1225778
  • Wadood, A., & Ulhaq, Z. (2013). In silico identification of novel inhibitors against Plasmodium falciparum dihydroorate dehydrogenase. Journal of Molecular Graphics & Modelling, 40, 40–47. https://doi.org/10.1016/j.jmgm.2012.11.010
  • Walker, N. F., Nadjm, B., & Whitty, C. J. M. (2014). Malaria. Medicine , 42(2), 100–106. https://doi.org/10.1016/j.mpmed.2013.11.011
  • Waters, N. C., & Geyer, J. A. (2003). Cyclin-dependent protein kinases as therapeutic drug targets for antimalarial drug development. Expert Opinion on Therapeutic Targets, 7(1), 7–17. https://doi.org/10.1517/14728222.7.1.7
  • Wermuth, C. G. (2006). Pharmacophores: Historical perspective and viewpoint from a medicinal chemist. In T. Langer & R. D. Hoffmann (Eds.), Pharmacophores and pharmacophore searches (pp. 1–13). Wiley-VCH Verlag GmbH & Co. KGaA.
  • White, N. J. (2008). Plasmodium knowlesi: The fifth human malaria parasite. Clinical Infectious Diseases, 46(2), 172–173. https://doi.org/10.1086/524889
  • White, N. J. (2011). Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria Journal, 10(297), 297. https://doi.org/10.1186/1475-2875-10-297
  • Wiesner, J., & Jomaa, H. (2021). 1-Deoxy-d-xylulose 5-phosphate pathway BT - encyclopedia of malaria. (M. Hommel & P. G. Kremsner (Eds., pp. 1–12). Springer.
  • Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2013). QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum. Chemical Papers, 67(11), 1462–1473. https://doi.org/10.2478/s11696-013-0398-5
  • World malaria report. (2020). https://www.who.int/publications/i/item/9789240015791 (accessed on March 2021).
  • Xiao, J., Sun, Z., Kong, F., & Gao, F. (2020). Current scenario of ferrocene-containing hybrids for antimalarial activity. European Journal of Medicinal Chemistry, 185, 111791. https://doi.org/10.1016/j.ejmech.2019.111791
  • Yadav, B. S., Chaturvedi, N., & Marina, N. (2019). Recent advances in system based study for anti-malarial drug development process. Current Pharmaceutical Design, 25(31), 3367–3377. https://doi.org/10.2174/1381612825666190902162105
  • Yadav, M. K., Singh, A., & Swati, D. (2014). A knowledge-based approach for identification of drugs against vivapain-2 protein of Plasmodium vivax through pharmacophore-based virtual screening with comparative modelling. Applied Biochemistry and Biotechnology, 173(8), 2174–2188. https://doi.org/10.1007/s12010-014-1023-y
  • Zeeshan Iqbal, J. M. (2014). In silico analysis of 2, 4-substituted heterocycles and glutamic acid containing antifolates as inhibitors of malarial (Plasmodium falciparum) protein, dihydrofolate reductase-thymidylate synthase. Journal of Proteomics & Bioinformatics, 07(11), 367–373. https://doi.org/10.4172/jpb.1000341

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.