217
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: an in silico analysis

, , , , , , , , , , , , , , & show all
Pages 9648-9700 | Received 10 Dec 2020, Accepted 17 May 2021, Published online: 09 Jul 2021

References

  • Abdelli, I., Hassani, F., BekkelBrikci, S., & Ghalem, S. (2021). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. Journal of Biomolecular Structure and Dynamics, 39(9), 3263–3276.
  • Acharya, Y., & Sayed, A. (2020). Chloroquine and hydroxychloroquine as a repurposed agent against COVID-19: A narrative review. Therapeutic Advances in Infectious Disease, 7, 1–14. https://doi.org/10.1177/2049936120947517
  • Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T. R., & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of the Total Environment, 730, 138996. https://doi.org/10.1016/j.scitotenv.2020.138996
  • Ahmad, R. (2015). Anticancer potential of medicinal plants Withania somnifera, Tinospora cordifolia and Curcuma longa: A review. World Research Journal of Medicinal & Aromatic Plants, 3(1), 2278–9863.
  • Ahmad, R. (2019). Steroidal glycoalkaloids from Solanum nigrum target cytoskeletal proteins: An in silico analysis. PeerJ, 7, e6012. https://doi.org/10.7717/peerj.6012
  • Ahmad, R., Khan, M. A., Srivastava, A. N., Gupta, A., Srivastava, A., Jafri, T. R., Siddiqui, Z., Chaubey, S., Khan, T., & Srivastava, A. K. (2020). Anticancer potential of dietary natural products: A comprehensive review. Anti-Cancer Agents in Medicinal Chemistry, 20(2), 122–236. https://doi.org/10.2174/1871520619666191015103712
  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3), 254. https://doi.org/10.3390/v12030254
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 1. https://doi.org/10.1038/srep34984
  • Al-Bari, M. A. A. (2017). Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacology Research & Perspectives, 5(1), e00293. https://doi.org/10.1002/prp2.293
  • Albohy, A., Zahran, E. M., Abdelmohsen, U. R., Salem, M. A., Al-Warhi, T., Al-Sanea, M. M., Abelyan, N., Khalil, H. E., Desoukey, S. Y., Fouad, M. A., & Kamel, M. S. (2020). Multitarget in silico studies of Ocimummen thiifolium, family Lamiaceae against SARS-CoV-2 supported by molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 30, 1–1.
  • Aniyery, R. B., Sharma, A., & Gupta, A. (2015). Molecular docking studies and in silico pharmacokinetic property study of synthesized organotin complex of (1r, 2s, 5r)-2-isopropyl-5-methylcyclohexanol. Journal of Chemical and Pharmaceutical Sciences, 9(4), 2656–2663.
  • Báez-Santos, Y. M., John, S. E. S., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Balkrishna, A., Pokhrel, S., Singh, H., Joshi, M., Mulay, V. P., Haldar, S. & Varshney, A. (2021). Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 Interactions to rescue Spike protein induced pathologies in humanized zebrafish model. Drug Design, Development and Therapy, 15, 1111–1133. https://doi.org/10.2147/DDDT.S292805
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011
  • Bloom, D. E., Canning, D., Kotschy, R., Prettner, K., Schünemann, J. J. (2019). Health and economic growth: Reconciling the micro and macro evidence. National Bureau of Economic Research.
  • Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10, 549. https://doi.org/10.3389/fimmu.2019.00549
  • Borquaye, L. S., Gasu, E. N., Ampomah, G. B., Kyei, L. K., Amarh, M. A., Mensah, C. N., Nartey, D., Commodore, M., Adomako, A. K., Acheampong, P., Mensah, J. O., Mormor, D. B., & Aboagye, C. I. (2020). Alkaloids from Cryptolepiss anguinolenta as potential inhibitors of SARS-CoV-2 viral proteins: An in silico study. BioMed Research International,1–14. https://doi.org/10.1155/2020/5324560
  • Borse, S., Joshi, M., Saggam, A., Bhat, V., Walia, S., Marathe, A., Sagar, S., Chavan-Gautam, P., Girme, A., Hingorani, L., & Tillu, G. (2021). Ayurveda botanicals in COVID-19 management: An in silico multi-target approach. PLoS One, 16(6), e0248479. https://doi.org/10.1371/journal.pone.0248479
  • Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation and treatment coronavirus (COVID-19). InStatpearls [Internet]. StatPearls Publishing.
  • Chen, H., & Du, Q. (2020). Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. https://doi.org/10.20944/preprints202001.0358.v3
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Cheng, F., Li, W., Liu, G., & Tang, Y. (2013). In silico ADMET prediction: Recent advances, current challenges and future trends. Current Topics in Medicinal Chemistry, 13(11), 1273–1289. https://doi.org/10.2174/15680266113139990033
  • Cherrak, S. A., Merzouk, H., & Mokhtari-Soulimane, N. (2020). Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. Plos One, 15(10), e0240653 https://doi.org/10.1371/journal.pone.0240653
  • Cortegiani, A., Ippolito, M., Ingoglia, G., & Einav, S. (2020). Chloroquine for COVID-19: Rationale, facts, hopes. Critical Care, 24(1), 210. https://doi.org/10.1186/s13054-020-02932-4
  • Cui, Q., Du, R., Anantpadma, M., Schafer, A., Hou, L., Tian, J., Davey, R. A., Cheng, H., & Rong, L. (2018). Identification of ellagic acid from plant Rhodiola rosea L. as an anti-Ebola virus entry inhibitor. Viruses, 10(4), 152. https://doi.org/10.3390/v10040152
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Debnath, P. K., Banerjee, S., Debnath, P., Mitra, A., & Mukherjee, P. K. (2015). Ayurveda–opportunities for developing safe and effective treatment choices for the future. In P. K. Mukherjee (Ed.), Evidence-Based Validation of Herbal Medicine (pp. 427–454).
  • Desforges, M., Le Coupanec, A., Dubeau, P., Bourgouin, A., Lajoie, L., Dubé, M., & Talbot, P. J. (2019). Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses, 12(1), 14. Janhttps://doi.org/10.3390/v12010014
  • Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • El-Mekkawy, S., Meselhy, M., Kusumoto, I., Kadota, S., Hattori, M., & Namba, T. (1995). Inhibitory effects of Egyptian folk medicines oh human immunodeficiency virus (HIV) reverse transcriptase. Chemical and Pharmaceutical Bulletin, 43(4), 641–648. https://doi.org/10.1248/cpb.43.641
  • Gandhi, A. J., Rupareliya, J. D., Shukla, V. J., Donga, S. B., & Acharya, R. (2020). An Ayurvedic perspective along with in silico study of the drugs for the management of SARS-CoV-2. Journal of Ayurveda and Integrative Medicine. https://doi.org/10.1016/j.jaim.2020.07.002
  • Gentile, D., Patamia, V., Scala, A., Sciortino, M. T., Piperno, A., & Rescifina, A. (2020). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs, 18(4), 225. https://doi.org/10.3390/md18040225
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Grubaugh, N. D., Ladner, J. T., Lemey, P., Pybus, O. G., Rambaut, A., Holmes, E. C., & Andersen, K. G. (2019). Tracking virus outbreaks in the twenty-first century. Nature Microbiology, 4(1), 10–19. https://doi.org/10.1038/s41564-018-0296-2
  • Gupta, A., Ahmad, R., Siddiqui, S., Yadav, K., Srivastava, A., Trivedi, A., Ahmad, B., Khan, M. A., Shrivastava, A. K., & Singh, G. K. (2021). Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: A computational analysis. Journal of Biomolecular Structure and Dynamics, 1–32.
  • Guy, J. L., Jackson, R. M., Jensen, H. A., Hooper, N. M., & Turner, A. J. (2005). Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. The FEBS Journal, 272(14), 3512–3520. https://doi.org/10.1111/j.1742-4658.2005.04756.x
  • Hajivalili, M., Hosseini, M., & Haji-Fatahaliha, M. (2020). Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges. Life Sciences, 257, 118058. https://doi.org/10.1016/j.lfs.2020.118058
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://time.com/5954416/india-covid-second-wave/ https://doi.org/10.1016/j.cell.2020.02.052
  • Jena, A. B., Kanungo, N., Nayak, V., Chainy, G. B. N., & Dandapat, J. (2021). Catechin and Curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane. Insights from Computational Study and Implication for Intervention. Scientific Reports. 11(1), 1 2043. https://doi.org/10.21203/rs.3.rs-22057/v1
  • Kadioglu, O., Saeed, M., Greten, H. J., & Efferth, T. (2021). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Computers in Biology and Medicine, 133, 104359. https://doi.org/10.1016/j.compbiomed.2021.104359
  • Kaihatsu, K., Yamabe, M., & Ebara, Y. (2018). Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 23(10), 2475. https://doi.org/10.3390/molecules23102475
  • Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2020). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 18, 1–2.
  • Khan, S. A., & Al-Balushi, K. (2021). Combating COVID-19: The role of drug repurposing and medicinal plants. Journal of Infection and Public Health, 14(4), 495–503. https://doi.org/10.1016/j.jiph.2020.10.012
  • Khan, T., Azad, I., Ahmad, R., Raza, S., Dixit, S., Joshi, S., & Khan, A. R. (2018). Synthesis, characterization, computational studies and biological activity evaluation of Cu, Fe, Co and Zn complexes with 2-butanone thiosemicarbazone and 1,10-phenanthroline ligands as anticancer and antibacterial agents. EXCLI Journal, 17, 331–348. https://doi.org/10.17179/excli2017-984
  • Lipinski, C. A. (2001). Avoiding investment in doomed drugs. Current Drug Discovery, 1, 17–19.
  • Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52(21), 6752–6756. https://doi.org/10.1021/jm901241e[Mismatch] [InsertedFromOnline
  • Manoharachary, C., & Nagaraju, D. (2016). Medicinal plants for human health and welfare. Annals of Phytomedicine, 5(1), 24–34.
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Maurya, D. K., & Sharma, D. (2020). Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1852119
  • Misra, A., Ahmad, R., Trivedi, A., & Khan, M. A. (2017). Evaluation of in vitro cytotoxic activity of ethanolic extract of Azadiracta indica leaves as a function of pH on human breast cancer cell line MDA-MB 231. Journal of Basic and Clinical Pharmacy, 8, S72–S79.
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Nadeem, M. K. (2020). In-silico study to elucidate corona virus by plant phytoderivatives that hits as a fusion inhibitor targeting HR1 domain in spike protein which conformational changes efficiently inhibit entry COVID-19. Translational Biomedicine, 11(3), 1.
  • Namachivayam, B., Raj, J. S., & Kandakatla, N. (2014). 2D, 3D-QSAR, docking and optimization of 5-substituted-1H-Indazole as inhibitors of GSK3 β. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 1–8.
  • Orhan, I. E., & Deniz, F. S. (2020). Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Natural Products and Bioprospecting, 10(4), 171–176. https://doi.org/10.1007/s13659-020-00250-4
  • Pandey, M. M., Rastogi, S., & Rawat, A. K. (2013). Indian traditional ayurvedic system of medicine and nutritional supplementation. Evidence-Based Complementary and Alternative Medicine, 2013, 1–12. doi: 10.1155/2013/376327
  • Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2020). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure and Dynamics, 1–11.
  • Pandit, M., & Latha, N. (2020). In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. https://doi.org/10.21203/rs.3.rs-22687/v1
  • Parida, M. M., Upadhyay, C., Pandya, G., & Jana, A. M. (2002). Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. Journal of Ethnopharmacology, 79(2), 273–278. https://doi.org/10.1016/s0378-8741(01)00395-6
  • Park, S. W., Kwon, M. J., Yoo, J. Y., Choi, H. J., & Ahn, Y. J. (2014). Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC Complementary and Alternative Medicine, 14(1), 171. https://doi.org/10.1186/1472-6882-14-171
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 09(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • Prasanth, D., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2020). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure and Dynamics, 1–15.
  • Proudfoot, J. R. (2002). Drugs, leads, and drug-likeness: An analysis of some recently launched drugs. Bioorganic & Medicinal Chemistry Letters, 12(12), 1647–1650. https://doi.org/10.1016/S0960-894X(02)00244-5
  • Purthvish, R., & Gopinatha, S. M. (2018). Antiviral prospective of Tinospora cordifolia on HSV-1. International Journal of Current Microbiology and Applied Sciences, 7(1), 3617–3624.
  • Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., Ahamed, F., & Chauhan, L. (2020). In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific Reports, 10(1), 1–24. https://doi.org/10.1038/s41598-020-77602-0
  • Ramadan, N., & Shaib, H. (2019). Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs, 9(1), 35–42. https://doi.org/10.18683/germs.2019.1155
  • Reperant, L. A., Rimmelzwaan, G. F., & Kuiken, T. (2009). Avian influenza viruses in mammals. Revue Scientifique et Technique de l'OIE, 28(1), 137–159. https://doi.org/10.20506/rst.28.1.1876
  • Ritchie, T. J., Ertl, P., & Lewis, R. (2011). The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discovery Today, 16(1-2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002
  • Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 323(18), 1824–1836. https://doi.org/10.1001/jama.2020.6019
  • Sharma, R., Martins, N., Kuca, K., Chaudhary, A., Kabra, A., Rao, M. M., & Prajapati, P. K. (2019). Chyawanprash: A Traditional Indian Bioactive Health Supplement. Biomolecules, 9(5), 161. https://doi.org/10.3390/biom9050161
  • Shelat, A. A., & Guy, R. K. (2007). The interdependence between screening methods and screening libraries. Current Opinion in Chemical Biology, 11(3), 244–251. https://doi.org/10.1016/j.cbpa.2007.05.003
  • Siddiqui, S., Upadhyay, S., Ahmad, R., Gupta, A., Srivastava, A., Trivedi, A., Husain, I., Ahmad, B., Ahamed, M., & Khan, M. A. (2020). Virtual screening of phytoconstituents from miracle herb Nigella sativa targeting nucleocapsid protein and papain-like protease of SARS-CoV-2 for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics, 1–21.
  • Singh, R., Gautam, A., Chandel, S., Ghosh, A., Dey, D., Roy, S., Ravichandiran, V., & Ghosh, D. (2020b). Protease inhibitory effect of natural polyphenolic compounds on SARS-CoV-2: An in silico study. Molecules, 25(20), 4604. https://doi.org/10.3390/molecules25204604
  • Singh, T. U., Parida, S., Lingaraju, M. C., Kesavan, M., Kumar, D., & Singh, R. K. (2020a). Drug repurposing approach to fight COVID-19. Pharmacological Reports : PR, 72(6), 1479–1508. https://doi.org/10.1007/s43440-020-00155-6
  • Srivastava, A., Siddiqui, S., Ahmad, R., Mehrotra, S., Ahmad, B. & Srivastava, A.N., (2020). Exploring nature’s bounty: Identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. Journal of Biomolecular Structure and Dynamics, 1–51.
  • Steinmann, J., Buer, J., Pietschmann, T., & Steinmann, E. (2013). Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. British Journal of Pharmacology, 168(5), 1059–1073. https://doi.org/10.1111/bph.12009
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
  • Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., Triet, N. T., Anh, T. T. V., Quy, P. T., Tat, P. V., Hue, N. V., Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5(14), 8312–8320. https://doi.org/10.1021/acsomega.0c00772
  • Tiwari, V., Beer, J. C., Sankaranarayanan, N. V., Swanson-Mungerson, M., & Desai, U. R. (2020). Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discovery Today, 25(8), 1535–1544. https://doi.org/10.1016/j.drudis.2020.06.017
  • Touret, F., & de Lamballerie, X. (2020). Of chloroquine and COVID-19. Antiviral Research, 177, 104762. https://doi.org/10.1016/j.antiviral.2020.104762
  • Trivedi, A., Ahmad, R., & Misra, A. (2018). Effect of alkaline pH on cytotoxicity profile of neem (Azadirachta indica) ethanolic extract against human breast cancer cell line MDA-MB-231. European Journal of Integrative Medicine, 24, 1–7. 1https://doi.org/10.1016/j.eujim.2018.10.004
  • Trivedi, A., Fatima, N., Husain, I., & Misra, A. (2019). An update on the therapeutic potential of neem and its active constituents: A panacea for all diseases. Era's Journal of Medical Research, 6(1), 110–117. https://doi.org/10.24041/ejmr2019.116
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ursu, O., Rayan, A., Goldblum, A., & Oprea, T. I. (2011). Understanding drug‐likeness. WIREs Computational Molecular Science, 1(5), 760–781. https://doi.org/10.1002/wcms.52
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Verma, A. (2012). Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1735–S7. https://doi.org/10.1016/S2221-1691(12)60486-9
  • Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2, 69. https://doi.org/10.1186/1743-422X-2-69
  • Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Fu, L., Cui, Y., Liu, X., Arledge, K. C., Chen, Y.-H., Zhang, L., & Wang, X. (2013). Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Research, 23(8), 986–993. https://doi.org/10.1038/cr.2013.92
  • Wang, C. Y., Hour, M. J., Lai, H. C., Chen, C. H., Chang, P. J., Huang, S. H., & Lin, C. W. (2018). Epigallocatechin-3-gallate inhibits the early stages of Japanese encephalitis virus infection. Virus Research, 253, 140–146. https://doi.org/10.1016/j.virusres.2018.06.009
  • Wang, Y., Wang, Y., Chen, Y., & Qin, Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. Journal of Medical Virology, 92(6), 568–576. https://doi.org/10.1002/jmv.25748
  • Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020). The SARS-CoV-2 outbreak: What we know. International Journal of Infectious Diseases : Diseases, 94, 44–48. https://doi.org/10.1016/j.ijid.2020.03.004
  • Yan, Y., Shin, W. I., Pang, Y. X., Meng, Y., Lai, J., You, C., Zhao, H., Lester, E., Wu, T., & Pang, C. H. (2020). The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: Recent advances, prevention, and treatment. International Journal of Environmental Research and Public Health, 17(7), 2323. https://doi.org/10.3390/ijerph17072323
  • Yang, J. F., Wang, F., Chen, Y. Z., Hao, G. F., & Yang, G. F. (2020). LARMD: Integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Briefings in Bioinformatics, 21(6), 2206–2218. https://doi.org/10.1093/bib/bbz141
  • Yang, J. M., & Chen, C. C. (2004). GEMDOCK: A generic evolutionary method for molecular docking. Proteins, 55(2), 288–304. https://doi.org/10.1002/prot.20035
  • Zang, R., Gomez Castro, M. F., McCune, B. T., Zeng, Q., Rothlauf, P. W., Sonnek, N. M., Liu, Z., Brulois, K. F., Wang, X., Greenberg, H. B., Diamond, M. S., Ciorba, M. A., Whelan, S. P. J., & Ding, S. (2020). TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Science Immunology, 5(47), eabc3582. https://doi.org/10.1126/sciimmunol.abc3582
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, D., Dai, S. M., & Tong, Q. (2020). COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. The Journal of Antimicrobial Chemotherapy, 75(7), 1667–1670. https://doi.org/10.1093/jac/dkaa114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.