180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The investigation into the effect of the length of RGD peptides and temperature on the interaction with the αIIbβ3 integrin: a molecular dynamic study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 9701-9712 | Received 25 Aug 2020, Accepted 17 May 2021, Published online: 01 Jun 2021

References

  • Ali, A., Hyder, S., Sabir, S., Chand, D., & Nain, A. K. (2006). Volumetric, viscometric, and refractive index behaviour of α-amino acids and their groups’ contribution in aqueous d-glucose solution at different temperatures. The Journal of Chemical Thermodynamics, 38(2), 136–143. https://doi.org/10.1016/j.jct.2005.04.011
  • Ashkani, J., & Rees, D. (2016). The critical role of VP1 in forming the necessary cavities for receptor-mediated entry of FMDV to the host cell. Scientific Reports, 6(1), 27140. https://doi.org/10.1038/srep27140
  • Beacham, D. A., Wise, R. J., Turci, S. M., & Handin, R. I. (1992). Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor by site-directed mutagenesis. Journal of Biological Chemistry, 267(5), 3409–3415. https://doi.org/10.1016/S0021-9258(19)50746-3
  • Bennett, J. S. (2005). Structure and function of the platelet integrin α IIb β 3. The Journal of Clinical Investigation, 115(12), 3363–3369. https://doi.org/10.1172/JCI26989
  • Bledzka, K., Qin, J., & Plow, E. F. (2019). Integrin αIIbβ3. In A. D. Michelson (Ed.), Platelets (4th ed., pp. 227–241). Academic Press.
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., & Parrinello, M. (2009). PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Cong, Y., Li, M., Feng, G., Li, Y., Wang, X., & Duan, L. (2017). Trypsin-ligand binding affinities calculated using an effective interaction entropy method under polarized force field. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-17868-z
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dijkgraaf, I., Beer, A. J., & Wester, H.-J. (2009). Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Frontiers in Bioscience, 14, 887–899. https://doi.org/10.2741/3284
  • Dong, Y.-w., Liao, M.-l., Meng, X.-l., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1274–1279. https://doi.org/10.1073/pnas.1718910115
  • Duan, L., Liu, X., & Zhang, J. Z. (2016). Interaction entropy: A new paradigm for highly efficient and reliable computation of protein–ligand binding free energy. Journal of the American Chemical Society, 138(17), 5722–5728. https://doi.org/10.1021/jacs.6b02682
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71. https://doi.org/10.1186/1741-7007-9-71
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 1–12. https://doi.org/10.1155/2018/3502514
  • Fuhrman, F. A. (1946). The effect of body temperature on drug action. Physiological Reviews, 26(2), 247–274. https://doi.org/10.1152/physrev.1946.26.2.247
  • Haberichter, S. L. (2015). von Willebrand factor propeptide: Biology and clinical utility. Blood, 126(15), 1753–1761. https://doi.org/10.1182/blood-2015-04-512731
  • Hamdan, F., Bigdeli, Z., Asghari, S. M., Sadremomtaz, A., & Balalaie, S. (2019). Synthesis of modified RGD‐based peptides and their in vitro activity. ChemMedChem, 14(2), 282–288. https://doi.org/10.1002/cmdc.201800704
  • Hayashi, T., Tsuchikawa, H., Umegawa, Y., & Murata, M. (2019). Small structural alterations greatly influence the membrane affinity of lipophilic ligands: Membrane interactions of bafilomycin A1 and its desmethyl derivative bearing 19F-labeling. Bioorganic & Medicinal Chemistry, 27(8), 1677–1682. https://doi.org/10.1016/j.bmc.2019.03.017
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hospital, A. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687. https://doi.org/10.1016/S0092-8674(02)00971-6
  • Istomin, Y. P. (2008). Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Experimental Oncology, 30(1), 56–59.
  • Jorgensen, W. L., & Madura, J. D. (1985). Temperature and size dependence for Monte Carlo simulations of TIP4P water. Molecular Physics, 56(6), 1381–1392. https://doi.org/10.1080/00268978500103111
  • Kahn, K., & Bruice, T. C. (2002). Parameterization of OPLS–AA force field for the conformational analysis of macrocyclic polyketides. Journal of Computational Chemistry, 23(10), 977–996. https://doi.org/10.1002/jcc.10051
  • Kauskot, A., & Hoylaerts, M. F. (2012). Platelet receptors. In P. Gresele, G. Born, C. Patrono, & C. Page (Eds.), Antiplatelet agents (Vol. 210, pp. 23–57). Springer. https://doi.org/10.1007/978-3-642-29423-5_2
  • Kumar, A., Srivastava, G., Negi, A. S., & Sharma, A. (2019). Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. Journal of Biomolecular Structure & Dynamics, 37(2), 275–290. https://doi.org/10.1080/07391102.2018.1426043
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laxmi, D., & Priyadarshy, S. (2002). HyperChem 6.03. Biotech Software & Internet Report, 3(1), 5–9. https://doi.org/10.1089/152791602317250351
  • Lu, X., Lu, D., Scully, M., & Kakkar, V. (2006). Integrins in drug targeting-RGD templates in toxins. Current Pharmaceutical Design, 12(22), 2749–2769. https://doi.org/10.2174/138161206777947713
  • Maclead, J. M., & Rosei, F. (2011). Directed assembly of nanostructures. In Comprehensive nanoscience and technology (pp. 13–68). Academic Press.
  • Marcus, Y. (1988). Ionic radii in aqueous solutions. Chemical Reviews, 88(8), 1475–1498. https://doi.org/10.1021/cr00090a003
  • McRobb, F. M., Negri, A., Beuming, T., & Sherman, W. (2016). Molecular dynamics techniques for modeling G protein-coupled receptors. Current Opinion in Pharmacology, 30, 69–75. https://doi.org/10.1016/j.coph.2016.07.001
  • Meirovitch, H., Cheluvaraja, S., & White, R. P. (2009). Methods for calculating the entropy and free energy and their application to problems involving protein flexibility and ligand binding. Current Protein & Peptide Science, 10(3), 229–243. https://doi.org/10.2174/138920309788452209
  • Miao, Y., & McCammon, J. A. (2016). G-protein coupled receptors: Advances in simulation and drug discovery. Current Opinion in Structural Biology, 41, 83–89. https://doi.org/10.1016/j.sbi.2016.06.008
  • Mohebbi, S., Tohidi Moghadam, T., Nikkhah, M., & Behmanesh, M. (2019). RGD-HK peptide-functionalized gold nanorods emerge as targeted biocompatible nanocarriers for biomedical applications. Nanoscale Research Letters, 14(1), 13. https://doi.org/10.1186/s11671-018-2828-3
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mousa, S. A., Bozarth, J. M., Naik, U. P., & Slee, A. (2001). Platelet GPIIb/IIIa binding characteristics of small molecule RGD mimetic: Distinct binding profile for Roxifiban. British Journal of Pharmacology, 133(3), 331–336. https://doi.org/10.1038/sj.bjp.0703943
  • Neves, R. P. P., Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2013). Parameters for molecular dynamics simulations of manganese-containing metalloproteins. Journal of Chemical Theory and Computation, 9(6), 2718–2732. https://doi.org/10.1021/ct400055v
  • Perrault, C., Lankhof, H., Pidard, D., Kerbiriou-Nabias, D., Sixma, J. J., Meyer, D., & Baruch, D. (1997). Relative importance of the glycoprotein Ib-binding domain and the RGD sequence of von Willebrand factor for its interaction with endothelial cells. Blood, 90(6), 2335–2344. https://doi.org/10.1182/blood.V90.6.2335.2335_2335_2344
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Peyvandi, F., Garagiola, I., & Baronciani, L. (2011). Role of von Willebrand factor in the haemostasis. Blood Transfusion, 9(Suppl 2), s3.
  • Raeisi, S. (2013). Molecular docking studies of squalen synthase inhibitors as potential anti cardiovascular disease drugs: Insights into drug-protein interaction discovery. Pharmaceutical Sciences, 19(2), 39–44.
  • Rastogi, A., Ghosh, A. K., & Suresh, S. (2011). Hydrogen bond interactions between water molecules in bulk liquid, near electrode surfaces and around ions. In J. C. Moreno-Piraján (Ed.), Thermodynamics-Physical chemistry of aqueous systems (pp. 351–364). InTech.
  • Ruepp, M.-D., Wei, H., Leuenberger, M., Lochner, M., & Thompson, A. J. (2017). The binding orientations of structurally-related ligands can differ; a cautionary note. Neuropharmacology, 119, 48–61. https://doi.org/10.1016/j.neuropharm.2017.01.023
  • Samad, F. A. (2016). A comprehensive In Silico analysis on the structural and functional impact of SNPs in the congenital heart defects associated with NKX2-5 gene – A molecular dynamic simulation approach. PLoS One, 11(5), e0153999.
  • Samad, F. A. (2016). A comprehensive In Silico analysis on the structural and functional impact of SNPs in the congenital heart defects associated with NKX2-5 gene – A molecular dynamic simulation approach. PLoS One, 11(5).
  • Sharma, R., & Sastry, G. N. (2015). Deciphering the dynamics of non-covalent interactions affecting thermal stability of a protein: Molecular dynamics study on point mutant of Thermus thermophilus isopropylmalate dehydrogenase. PLoS One, 10(12), e0144294. https://doi.org/10.1371/journal.pone.0144294
  • Shattil, S. J., Kashiwagi, H., & Pampori, N. (1998). Integrin signaling: The platelet paradigm. Blood, 91(8), 2645–2657. https://doi.org/10.1182/blood.V91.8.2645.2645_2645_2657
  • Smith, J. W., Piotrowicz, R. S., & Mathis, D. (1994). A mechanism for divalent cation regulation of beta 3-integrins. Journal of Biological Chemistry, 269(2), 960–967. https://doi.org/10.1016/S0021-9258(17)42205-8
  • Stahl, N., & Jencks, W. P. (1986). Hydrogen bonding between solutes in aqueous solution. Journal of the American Chemical Society, 108(14), 4196–4205. https://doi.org/10.1021/ja00274a058
  • Stefanini, L., & Bergmeier, W. (2019). RAP GTPases and platelet integrin signaling. Platelets, 30(1), 41–47. https://doi.org/10.1080/09537104.2018.1476681
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 16(31), 16719–16729. https://doi.org/10.1039/C4CP01388C
  • Tang, X. C., Pikal, M. J., & Taylor, L. S. (2002). The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. Pharmaceutical Research, 19(4), 484–490. https://doi.org/10.1023/A:1015199713635
  • Tang, Z., Roberts, C. C., & Chia-En, A. C. (2017 ). Understanding ligand-receptor non-covalent binding kinetics using molecular modeling. Frontiers in Bioscience, 22, 960.
  • Van Dijk, E., Hoogeveen, A., & Abeln, S. (2015). The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLOS Computational Biology, 11(5), e1004277. https://doi.org/10.1371/journal.pcbi.1004277
  • Varga-Szabo, D., Pleines, I., & Nieswandt, B. (2008). Cell adhesion mechanisms in platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3), 403–412. https://doi.org/10.1161/ATVBAHA.107.150474
  • Wang, F., Li, Y., Shen, Y., Wang, A., Wang, S., & Xie, T. (2013). The functions and applications of RGD in tumor therapy and tissue engineering. International Journal of Molecular Sciences, 14(7), 13447–13462. https://doi.org/10.3390/ijms140713447
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e
  • Wolberg, A. S. (2004). A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. Journal of Trauma and Acute Care Surgery, 56(6), 1221–1228.
  • Wolfenden, R., Lewis, C. A., Yuan, Y., & Carter, C. W. (2015). Temperature dependence of amino acid hydrophobicities. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7484–7488. https://doi.org/10.1073/pnas.1507565112
  • Xie, H., Li, Y., Yu, F., Xie, X., Qiu, K., & Fu, J. (2015). An investigation of molecular docking and molecular dynamic simulation on imidazopyridines as B-Raf kinase inhibitors. International Journal of Molecular Sciences, 16(11), 27350–27361. https://doi.org/10.3390/ijms161126026
  • Xu, L., Sun, H., Li, Y., Wang, J., & Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry. B, 117(28), 8408–8421. https://doi.org/10.1021/jp404160y
  • Zhou, X., Zheng, J., Ivan, F. X., Yin, R., Ranganathan, S., Chow, V. T. K., & Kwoh, C.-K. (2018). Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses. BMC Genomics, 19(S2), 88. https://doi.org/10.1186/s12864-018-4461-z
  • Zhou, Y.-F., Eng, E. T., Zhu, J., Lu, C., Walz, T., & Springer, T. A. (2012). Sequence and structure relationships within von Willebrand factor. Blood, 120(2), 449–458. https://doi.org/10.1182/blood-2012-01-405134
  • Zhu, J., Zhu, J., & Springer, T. A. (2013). Complete integrin headpiece opening in eight steps. Journal of Cell Biology, 201(7), 1053–1068. https://doi.org/10.1083/jcb.201212037
  • Zhu, J., Zhu, J., & Springer, T. A. (2013). Complete integrin headpiece opening in eight steps. The Journal of Cell Biology, 201(7), 1053–1068. https://doi.org/10.1083/jcb.201212037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.