1,122
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Computational analysis of protein stability and allosteric interaction networks in distinct conformational forms of the SARS-CoV-2 spike D614G mutant: reconciling functional mechanisms through allosteric model of spike regulation

, , &
Pages 9724-9741 | Received 01 Mar 2021, Accepted 18 May 2021, Published online: 01 Jun 2021

References

  • Astl, L., & Verkhivker, G. M. (2019). Atomistic modeling of the ABL kinase regulation by allosteric modulators using structural perturbation analysis and community-based network reconstruction of allosteric communications. Journal of Chemical Theory and Computation, 15(5), 3362–3380. https://doi.org/10.1021/acs.jctc.9b00119
  • Astl, L., & Verkhivker, G. M. (2020). Dynamic view of allosteric regulation in the Hsp70 chaperones by J-Domain cochaperone and post-translational modifications: Computational analysis of Hsp70 mechanisms by exploring conformational landscapes and residue interaction networks. Journal of Chemical Information and Modeling, 60(3), 1614–1631. https://doi.org/10.1021/acs.jcim.9b01045
  • Badaczewska-Dawid, A. E., Kolinski, A., & Kmiecik, S. (2020a). Computational reconstruction of atomistic protein structures from coarse-grained models. Computational and Structural Biotechnology Journal, 18, 162–176. https://doi.org/10.1016/j.csbj.2019.12.007
  • Badaczewska-Dawid, A. E., Kolinski, A., & Kmiecik, S. (2020b). Protocols for fast simulations of protein structure flexibility using CABS-Flex and SURPASS. Methods in Molecular Biology, 2165, 337–353.
  • Bahar, I., Lezon, T. R., Yang, L. W., & Eyal, E. (2010). Global dynamics of proteins: Bridging between structure and function. Annual Review of Biophysics, 39(1), 23–42. https://doi.org/10.1146/annurev.biophys.093008.131258
  • Benton, D. J., Wrobel, A. G., Roustan, C., Borg, A., Xu, P., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2021). The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 118(9), e2022586118. https://doi.org/10.1073/pnas.2022586118
  • Benton, D. J., Wrobel, A. G., Xu, P., Roustan, C., Martin, S. R., Rosenthal, P. B., Skehel, J. J., & Gamblin, S. J. (2020). Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 588(7837), 327–330. https://doi.org/10.1038/s41586-020-2772-0
  • Berger, I., & Schaffitzel, C. (2020). The SARS-CoV-2 spike protein: Balancing stability and infectivity. Cell Research, 30(12), 1059–1060. https://doi.org/10.1038/s41422-020-00430-4
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data nank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336
  • Blacklock, K., & Verkhivker, G. M. (2014). Computational modeling of allosteric regulation in the hsp90 chaperones: A statistical ensemble analysis of protein structure networks and allosteric communications. PLoS Computational Biology, 10, e1003679. https://doi.org/10.1371/journal.pcbi.1003679
  • Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S. M., Walsh, R. M., Jr., Rawson, S., Rits-Volloch, S., & Chen, B. (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science, 369, 1586–1592. https://doi.org/10.1126/science.abd4251
  • Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., Taylor, B. C., McLellan, J. S., Fadda, E., & Amaro, R. E. (2020). Beyond shielding: The roles of glycans in the SARS-CoV-2 spike potein. ACS Central Science, 6(10), 1722–1734. https://doi.org/10.1021/acscentsci.0c01056
  • Ciemny, M. P., Badaczewska-Dawid, A. E., Pikuzinska, M., Kolinski, A., & Kmiecik, S. (2019). Modeling of disordered protein structures using Monte Carlo simulations and knowledge-based statistical force fields. International Journal of Molecular Sciences, 20(3), e606. https://doi.org/10.3390/ijms20030606
  • Czemeres, J., Buse, K., & Verkhivker, G. M. (2017). Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One, 12, e0190267. https://doi.org/10.1371/journal.pone.0190267
  • Dehouck, Y., Gilis, D., & Rooman, M. (2006). A new generation of statistical potentials for proteins. Biophysical Journal, 90(11), 4010–4017. https://doi.org/10.1529/biophysj.105.079434
  • Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., & Rooman, M. (2009). Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics, 25, 2537–2543. https://doi.org/10.1093/bioinformatics/btp445
  • Dehouck, Y., Kwasigroch, J. M., Rooman, M., & Gilis, D. (2013). BeAtMuSiC: Prediction of changes in protein-protein binding affinity on mutations. Nucleic Acids Research, 41(W1), W333–W339. https://doi.org/10.1093/nar/gkt450
  • Di Paola, L., Hadi-Alijanvand, H., Song, X., Hu, G., & Giuliani, A. (2020). The discovery of a putative allosteric site in the SARS-CoV-2 spike protein using an integrated structural/dynamic approach. Journal of Proteome Research, 19(11), 4576–4586. https://doi.org/10.1021/acs.jproteome.0c00273
  • Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., & Wang, H. (2020). The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: Implications for the design of spike-based vaccine immunogens. Frontiers in Immunology, 11, 576622. https://doi.org/10.3389/fimmu.2020.576622
  • Eyal, E., Lum, G., & Bahar, I. (2015). The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics, 31, 1487–1489. https://doi.org/10.1093/bioinformatics/btu847
  • Fan, X., Cao, D., Kong, L., & Zhang, X. (2020). Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nature Communications, 11, 3618.
  • Fernández, A. (2020). Structural impact of mutation D614G in SARS-CoV-2 spike protein: Enhanced infectivity and therapeutic opportunity. ACS Medicinal Chemistry Letters, 11, 1667–1670. https://doi.org/10.1021/acsmedchemlett.0c00410
  • Fernandez-Fuentes, N., Zhai, J., & Fiser, A. (2006). ArchPRED: A template based loop structure prediction server. Nucleic Acids Research, 34(Web Server), W173–W176. https://doi.org/10.1093/nar/gkl113
  • Fiser, A., & Sali, A. (2003). ModLoop: Automated modeling of loops in protein structures. Bioinformatics, 19, 2500–2501. https://doi.org/10.1093/bioinformatics/btg362
  • Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5, 345.
  • Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799
  • Gobeil, S. M., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Manne, K., Stalls, V., Kopp, M. F., Henderson, R., Edwards, R. J., & Haynes, B. F. (2021). Acharya, P. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Reports, 34, 108630. https://doi.org/10.1016/j.celrep.2020.108630
  • Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology, 320(2), 369–387. https://doi.org/10.1016/S0022-2836(02)00442-4
  • Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., & Wang, X. (2017). Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Research, 27(1), 119–129. https://doi.org/10.1038/cr.2016.152
  • Gur, M., Taka, E., Yilmaz, S. Z., Kilinc, C., Aktas, U., & Golcuk, M. (2020). Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. Journal of Chemical Physics, 153, 075101. https://doi.org/10.1063/5.0011141
  • Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008, August 19–24). Exploring network structure, dynamics, and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings of the 7th Python in Science Conference (SciPy2008) (pp. 11–15). Publisher SciPy Conferences, Pasadena, CA.
  • Halder, A., Anto, A., Subramanyan, V., Bhattacharyya, M., & Vishveshwara, S. (2020). Surveying the side-chain network approach to protein structure and dynamics: The SARS-CoV-2 spike protein as an illustrative case. Frontiers in Molecular Biosciences, 7, 596945.
  • Hekkelman, M. L., Te Beek, T. A., Pettifer, S. R., Thorne, D., Attwood, T. K., & Vriend, G. (2010). WIWS: A protein structure bioinformatics web service collection. Nucleic Acids Research, 38(Web Server), W719–W723. https://doi.org/10.1093/nar/gkq453
  • Henderson, R., Edwards, R. J., Mansouri, K., Janowska, K., Stalls, V., Gobeil, S. M. C., Kopp, M., Li, D., Parks, R., Hsu, A. L., Borgnia, M. J., Haynes, B. F., & Acharya, P. (2020). Controlling the SARS-CoV-2 spike glycoprotein conformation. Nature Structural & Molecular Biology, 27(10), 925–933. https://doi.org/10.1038/s41594-020-0479-4
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181, 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hooft, R. W., Sander, C., & Vriend, G. (1996). Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins: Structure, Function, and Genetics, 26(4), 363–376. https://doi.org/10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
  • Hou, Y. J., Chiba, S., Halfmann, P., Ehre, C., Kuroda, M., Dinnon, K. H., 3rd, Leist, S. R., Schäfer, A., Nakajima, N., Takahashi, K., Lee, R. E., Mascenik, T. M., Graham, R., Edwards, C. E., Tse, L. V., Okuda, K., Markmann, A. J., Bartelt, L., de Silva, A., … Baric, R. S. (2020). SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 370(6523), 1464–1468. https://doi.org/10.1126/science.abe8499
  • Hsieh, C. L., Goldsmith, J. A., Schaub, J. M., DiVenere, A. M., Kuo, H. C., Javanmardi, K., Le, K. C., Wrapp, D., Lee, A. G., Liu, Y., Chou, C. W., Byrne, P. O., Hjorth, C. K., Johnson, N. V., Ludes-Meyers, J., Nguyen, A. W., Park, J., Wang, N., Amengor, D., … McLellan, J. S. (2020). Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 369(6510), 1501–1505. https://doi.org/10.1126/science.abd0826
  • Jackson, C. B., Zhang, L., Farzan, M., & Choe, H. (2020). Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochemical and Biophysical Research Communications, 538, 108–115. https://doi.org/10.1016/j.bbrc.2020.11.026
  • Jamroz, M., Orozco, M., Kolinski, A., & Kmiecik, S. (2013). Consistent view of protein fluctuations from all-atom molecular dynamics and coarse-grained dynamics with knowledge-based force-field. Journal of Chemical Theory and Computation, 9(1), 119–125. https://doi.org/10.1021/ct300854w
  • Juraszek, J., Rutten, L., Blokland, S., Bouchier, P., Voorzaat, R., Ritschel, T., Bakkers, M. J. G., Renault, L. L. R., & Langedijk, J. P. M. (2021). Stabilizing the closed SARS-CoV-2 spike trimer. Nature Communications, 12, 244. https://doi.org/10.1038/s41467-020-20321-x
  • Kirchdoerfer, R. N., Wang, N., Pallesen, J., Wrapp, D., Turner, H. L., Cottrell, C. A., Corbett, K. S., Graham, B. S., McLellan, J. S., & Ward, A. B. (2018). Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, 8, 15701. https://doi.org/10.1038/s41598-018-34171-7
  • Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., & Kolinski, A. (2016). Coarse-grained protein models and their applications. Chemical Reviews, 116(14), 7898–7936. https://doi.org/10.1021/acs.chemrev.6b00163
  • Kmiecik, S., Kouza, M., Badaczewska-Dawid, A. E., Kloczkowski, A., & Kolinski, A. (2018). Modeling of protein structural flexibility and large-scale dynamics: Coarse-grained simulations and elastic network models. International Journal of Molecular Sciences, 19(11), e3496. https://doi.org/10.3390/ijms19113496
  • Ko, J., Lee, D., Park, H., Coutsias, E. A., Lee, J., & Seok, C. (2011). The FALC-Loop web server for protein loop modeling. Nucleic Acids Research, 39(suppl), W210–W214. https://doi.org/10.1093/nar/gkr352
  • Kolinski, A. (2004). Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica, 51(2), 349–371. https://doi.org/10.18388/abp.2004_3575
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Montefiori, D. C. (2020a). Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182, 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E. E., Bhattacharya, T., Parker, M. D., Partridge, D. G., Evans, C. M., de Silva, T. I., LaBranche, C. C., & Montefiori, D. (2020b). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv, https://doi.org/10.1101/2020.04.29.069054
  • Krivov, G. G., Shapovalov, M. V., & Dunbrack, R. L. Jr. (2009). Improved prediction of protein side-chain conformations with SCWRL4. Proteins, 77, 778–795. https://doi.org/10.1002/prot.22488
  • Kurcinski, M., Oleniecki, T., Ciemny, M. P., Kuriata, A., Kolinski, A., & Kmiecik, S. (2019). CABS-flex standalone: A simulation environment for fast modeling of protein flexibility. Bioinformatics, 35, 694–695. https://doi.org/10.1093/bioinformatics/bty685
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lavery, R., & Sacquin-Mora, S. (2007). Protein mechanics: A route from structure to function. Journal of Biosciences, 32(S1), 891–898. https://doi.org/10.1007/s12038-007-0089-x
  • Li, H., Chang, Y. Y., Lee, J. Y., Bahar, I., & Yang, L. W. (2017). DynOmics: Dynamics of structural proteome and beyond. Nucleic Acids Research, 45(W1), W374–W380. https://doi.org/10.1093/nar/gkx385
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
  • Lombardi, L. E., Marti, M. A., & Capece, L. (2016). CG2AA: Backmapping protein coarse-grained structures. Bioinformatics, 32, 1235–1237. https://doi.org/10.1093/bioinformatics/btv740
  • Lu, M., Uchil, P. D., Li, W., Zheng, D., Terry, D. S., Gorman, J., Shi, W., Zhang, B., Zhou, T., Ding, S., Gasser, R., Prevost, J., Beaudoin-Bussieres, G., Anand, S. P., Laumaea, A., Grover, J. R., Lihong, L., Ho, D. D., Mascola, J., … Mothes, W. (2020). Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles. bioRxiv. https://doi.org/10.1101/2020.09.10.286948
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 395, 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Mansbach, R. A., Chakraborty, S., Nguyen, K., Montefiori, D., Korber, B., & Gnanakaran, S. (2020). The SARS-CoV-2 spike variant D614G favors an open conformational state. bioRxiv. https://doi.org/10.1101/2020.07.26.2197412007.2026.219741.
  • McCallum, M., Walls, A. C., Bowen, J. E., Corti, D., & Veesler, D. (2020). Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nature Structural & Molecular Biology, 27(10), 942–949. https://doi.org/10.1038/s41594-020-0483-8
  • Mishra, C. B., Pandey, P., Sharma, R. D., Malik, M. Z., Mongre, R. K., Lynn, A. M., Prasad, R., Jeon, R., & Prakash, A. (2021). Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: An integrated computational approach. Briefings in Bioinformatics, 22(2), 1346–1360. https://doi.org/10.1093/bib/bbaa378
  • Navizet, I., Cailliez, F., & Lavery, R. (2004). Probing protein mechanics: Residue-level properties and their use in defining domains. Biophysical Journal, 87(3), 1426–1435. https://doi.org/10.1529/biophysj.104.042085
  • Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103
  • Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113. https://doi.org/10.1103/PhysRevE.69.026113
  • Ozono, S., Zhang, Y., Ode, H., Sano, K., Tan, T. S., Imai, K., Miyoshi, K., Kishigami, S., Ueno, T., Iwatani, Y., Suzuki, T., & Tokunaga, K. (2021). SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature Communications, 12(1), 848. https://doi.org/10.1038/s41467-021-21118-2
  • Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2020). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1796811
  • Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., … Shi, P. Y. (2021). Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592(7852), 116–121. https://doi.org/10.1038/s41586-020-2895-3
  • Rader, A. J., & Brown, S. M. (2011). Correlating allostery with rigidity. Molecular Biosystems, 7, 464–471. https://doi.org/10.1039/c0mb00054j
  • Rader, A. J., Yennamalli, R. M., Harter, A. K., & Sen, T. Z. (2012). A rigid network of long-range contacts increases thermostability in a mutant endoglucanase. Journal of Biomolecular Structure and Dynamics, 30(6), 628–637. https://doi.org/10.1080/07391102.2012.689696
  • Ramanan, R., Chaturvedi, S. S., Lehnert, N., Schofield, C. J., Karabencheva-Christova, T. G., & Christov, C. Z. (2020). Catalysis by the JmjC histone demethylase KDM4A integrates substrate dynamics, correlated motions and molecular orbital control. Chemical Science, 11(36), 9950–9961. https://doi.org/10.1039/D0SC03713C
  • Ray, D., Le, L., & Andricioaei, I. (2020). Distant residues modulate conformational opening in SARS-CoV-2 spike protein. bioRxiv. https://doi.org/10.1101/2020.12.07.415596
  • Rose, P. W., Prlic, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., Costanzo, L. D., Duarte, J. M., Dutta, S., Feng, Z., Green, R. K., Goodsell, D. S., Hudson, B., Kalro, T., Lowe, R., Peisach, E., Randle, C., Rose, A. S., Shao, C., … Burley, S. K. (2017). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45, D271–D281.
  • Rotkiewicz, P., & Skolnick, J. (2008). Fast procedure for reconstruction of full-atom protein models from reduced representations. Journal of Computational Chemistry, 29(9), 1460–1465. https://doi.org/10.1002/jcc.20906
  • Sacquin-Mora, S., & Lavery, R. (2006). Investigating the local flexibility of functional residues in hemoproteins. Biophysical Journal, 90(8), 2706–2717. https://doi.org/10.1529/biophysj.105.074997
  • Sacquin-Mora, S., Laforet, E., & Lavery, R. (2007). Locating the active sites of enzymes using mechanical properties. Proteins, 67, 350–359. https://doi.org/10.1002/prot.21353
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX Web Server: An online force field. Nucleic Acids Research, 33(Web Server), W382–W388. https://doi.org/10.1093/nar/gki387
  • Sethi, A., Eargle, J., Black, A. A., & Luthey-Schulten, Z. (2009). Dynamical networks in tRNA: Protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6620–6625. https://doi.org/10.1073/pnas.0810961106
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117, 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581, 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. https://doi.org/10.1101/gr.1239303
  • Stetz, G., & Verkhivker, G. M. (2015). Dancing through life: Molecular dynamics simulations and network-centric modeling of allosteric mechanisms in Hsp70 and Hsp110 chaperone proteins. PLoS One, 10, e0143752. https://doi.org/10.1371/journal.pone.0143752
  • Stetz, G., & Verkhivker, G. M. (2017). Computational analysis of residue interaction networks and coevolutionary relationships in the Hsp70 chaperones: A community-hopping model of allosteric regulation and communication. PLOS Computational Biology, 13(1), e1005299. https://doi.org/10.1371/journal.pcbi.1005299
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
  • Taka, E., Yilmaz, S. Z., Golcuk, M., Kilinc, C., Aktas, U., Yildiz, A., & Gur, M. (2020). Critical interactions between the SARS-CoV-2 spike glycoprotein and the human ACE2 receptor. bioRxiv. https://doi.org/10.1101/2020.09.21.305490
  • Teruel, N., Mailhot, O., & Najmanovich, R. J. (2020). Modeling conformational state dynamics and its role on infection for SARS-CoV-2 spike protein variants. bioRxiv. https://doi.org/10.1101/2020.12.16.423118
  • Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L., & Tawfik, D. S. (2007). The stability effects of protein mutations appear to be universally distributed. Journal of Molecular Biology, 369(5), 1318–1332. https://doi.org/10.1016/j.jmb.2007.03.069
  • Tortorici, M. A., & Veesler, D. (2019). Structural insights into coronavirus entry. Advances in Virus Research, 105, 93–116.
  • Turoňová, B., Sikora, M., Schürmann, C., Hagen, W. J. H., Welsch, S., Blanc, F. E. C., von Bülow, S., Gecht, M., Bagola, K., Hörner, C., van Zandbergen, G., Landry, J., de Azevedo, N. T. D., Mosalaganti, S., Schwarz, A., Covino, R., Mühlebach, M. D., Hummer, G., Krijnse Locker, J., & Beck, M. (2020). In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 370, 203–208. https://doi.org/10.1126/science.abd5223
  • Van Durme, J., Delgado, J., Stricher, F., Serrano, L., Schymkowitz, J., & Rousseau, F. (2011). A graphical interface for the FoldX force field. Bioinformatics, 27(12), 1711–1712. https://doi.org/10.1093/bioinformatics/btr254
  • Verkhivker, G. M. (2020a). Coevolution, dynamics and allostery conspire in shaping cooperative binding and signal transmission of the SARS-CoV-2 spike protein with human angiotensin-converting enzyme 2. International Journal of Molecular Sciences, 21(21), 8268. https://doi.org/10.3390/ijms21218268
  • Verkhivker, G. M. (2020b). Molecular simulations and network modeling reveal an allosteric signaling in the SARS-CoV-2 spike proteins. Journal of Proteome Research, 19(11), 4587–4608. https://doi.org/10.1021/acs.jproteome.0c00654
  • Vijayabaskar, M. S., & Vishveshwara, S. (2010). Interaction energy based protein structure networks. Biophysical Journal, 99(11), 3704–3715. https://doi.org/10.1016/j.bpj.2010.08.079
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Walls, A. C., Tortorici, M. A., Bosch, B. J., Frenz, B., Rottier, P. J. M., DiMaio, F., Rey, F. A., & Veesler, D. (2016). Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature, 531, 114–117. https://doi.org/10.1038/nature16988
  • Walls, A. C., Tortorici, M. A., Snijder, J., Xiong, X., Bosch, B. J., Rey, F. A., & Veesler, D. (2017). Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 114(42), 11157–11162. https://doi.org/10.1073/pnas.1708727114
  • Walls, A. C., Xiong, X., Park, Y. J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., Lanzavecchia, A., Zambon, M., Rey, F. A., Corti, D., & Veesler, D. (2019). Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 176, 1026–1039.e15. https://doi.org/10.1016/j.cell.2018.12.028
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94, e00127-20.
  • Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181, 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  • Weissman, D., Alameh, M. G., de Silva, T., Collini, P., Hornsby, H., Brown, R., LaBranche, C. C., Edwards, R. J., Sutherland, L., Santra, S., Mansouri, K., Gobeil, S., McDanal, C., Pardi, N., Hengartner, N., Lin, P. J. C., Tam, Y., Shaw, P. A., Lewis, M. G., … Montefiori, D. C. (2021). D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host & Microbe, 29(1), 23–31. https://doi.org/10.1016/j.chom.2020.11.012
  • Woo, H., Park, S. J., Choi, Y. K., Park, T., Tanveer, M., Cao, Y., Kern, N. R., Lee, J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2020). Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. Journal of Physical Chemistry B, 124, 7128–7137. https://doi.org/10.1021/acs.jpcb.0c04553
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe. , 27, 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Xiong, X., Qu, K., Ciazynska, K. A., Hosmillo, M., Carter, A. P., Ebrahimi, S., Ke, Z., Scheres, S. H. W., Bergamaschi, L., Grice, G. L., Zhang, Y., Nathan, J. A., Baker, S., James, L. C., Baxendale, H. E., Goodfellow, I., Doffinger, R., Briggs, J. A. G., & The CITIID-NIHR COVID-19 BioResource Collaboration. (2020). A thermostable, closed SARS-CoV-2 spike protein trimer. Nature Structural & Molecular Biology, 27(10), 934–941. https://doi.org/10.1038/s41594-020-0478-5
  • Xu, C., Wang, Y., Liu, C., Zhang, C., Han, W., Hong, X., Wang, Y., Hong, Q., Wang, S., Zhao, Q., Wang, Y., Yang, Y., Chen, K., Zheng, W., Kong, L., Wang, F., Zuo, Q., Huang, Z., & Cong, Y. (2021). Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Science Advances, 7, eabe5575.
  • Yazhini, A., Prakash Sidhanta, D. S., & Srinivasan, N. (2020). D614G substitution enhances the stability of trimeric SARS-CoV-2 spike protein. bioRxiv. https://doi.org/10.1101/2020.11.02.364273
  • Yi, Y., Lagniton, P. N. P., Ye, S., Li, E., & Xu, R. H. (2020). COVID-19: What has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences, 16(10), 1753–1766. https://doi.org/10.7150/ijbs.45134
  • Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., Baum, A., Diehl, W. E., Dauphin, A., Carbone, C., Veinotte, K., Egri, S. B., Schaffner, S. F., Lemieux, J. E., Munro, J. B., Rafique, A., Barve, A., Sabeti, P. C., Kyratsous, C. A., … Luban, J. (2020). Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell, 183, 739–751.e8. https://doi.org/10.1016/j.cell.2020.09.032
  • Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S. M., Walsh, R. M., Rits-Volloch, S., Sliz, P., & Chen, B. (2021). Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science, 372, 525–530. https://doi.org/10.1126/science.abf2303
  • Zhang, L., Jackson, C. B., Mou, H., Ojha, A., Peng, H., Quinlan, B. D., Rangarajan, E. S., Pan, A., Vanderheiden, A., Suthar, M. S., Li, W., Izard, T., Rader, C., Farzan, M., & Choe, H. (2020). SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 11, 6013. https://doi.org/10.1038/s41467-020-19808-4
  • Zhou, T., Tsybovsky, Y., Gorman, J., Rapp, M., Cerutti, G., Chuang, G. Y., Katsamba, P. S., Sampson, J. M., Schön, A., Bimela, J., Boyington, J. C., Nazzari, A., Olia, A. S., Shi, W., Sastry, M., Stephens, T., Stuckey, J., Teng, I. T., Wang, P., … Kwong, P. D. (2020). Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host & Microbe. , 28(6), 867–879.e5. https://doi.org/10.1016/j.chom.2020.11.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.