205
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A comparison on the biochemical activities of Fluorescein disodium, Rose Bengal and Rhodamine 101 in the light of DNA binding, antimicrobial and cytotoxic study

, , , , , & show all
Pages 9848-9859 | Received 06 Nov 2020, Accepted 24 May 2021, Published online: 14 Jun 2021

References

  • Afzal, M., Ghosh, S., Das, S., & Chattopadhyay, N. (2016). Endogenous activation-induced delivery of a bioactive photosensitizer from a micellar carrier to natural DNA. The Journal of Physical Chemistry B, 120(44), 11492–11501. https://doi.org/10.1021/acs.jpcb.6b08283
  • Al Masum, A., Chakraborty, M., Ghosh, S., Laha, D., Karmakar, P., Islam, M. M., & Mukhopadhyay, S. (2016). Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies. Journal of Photochemistry and Photobiology B, Biology, 164, 369–379. https://doi.org/10.1016/j.jphotobiol.2016.10.002
  • Amin, K. A., Hameid, H. A., II, & Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48(10), 2994–2999. https://doi.org/10.1016/j.fct.2010.07.039
  • Barbero, N., Barni, E., Barolo, C., Quagliotto, P., Viscardi, G., Napione, L., Pavan, S., & Bussolino, F. (2009). A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigments, 80(3), 307–313. https://doi.org/10.1016/j.dyepig.2008.08.006
  • Bardhan, S., Pal, K., Roy, S., Das, S., Chakraborty, A., Karmakar, P., Basu, R., & Das, S. (2019). Nanoparticle Size-Dependent Antibacterial Activities in Natural Minerals. Journal of Nanoscience and Nanotechnology, 19(11), 7112–7122. https://doi.org/10.1166/jnn.2019.16658
  • Beaumont, P. C., Johnson, D. G., & Parsons, B. J. (1993). Photophysical properties of laser dyes: Picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101. Journal of the Chemical Society, Faraday Transactions, 89(23), 4185–4191. https://doi.org/10.1039/ft9938904185
  • Bhattacharya, D., Saha, B., Mukherjee, A., Santra, C. R., & Karmakar, P. (2012). Gold nanoparticles conjugated antibiotics: Stability and functional evaluation. Nanoscience and Nanotechnology, 2(2), 14–21. https://doi.org/10.5923/j.nn.20120202.04
  • BIOVIA, Dassault Systèmes. 2020. Discovery Studio Visualizer, Version 2019. Dassault Systèmes.
  • Bottiroli, G., Croce, A. C., Balzarini, P., Locatelli, D., Baglioni, P., Lo Nostro, P., Monici, M., & Pratesi, R. (1997). Enzyme‐assisted cell photosensitization: A proposal for an efficient approach to tumor therapy and diagnosis. The Rose Bengal fluorogenic substrate. Photochemistry and Photobiology, 66(3), 374–383. https://doi.org/10.1111/j.1751-1097.1997.tb03161.x
  • Chaires, J. B. (1997). Energetic of drug DNA interactions. Biopolymers, 44(3), 201–215. https://doi.org/10.1002/(SICI)1097-0282(1997)44:3<201::AID-BIP2>3.0.CO;2-Z
  • Chakraborty, S. P., Sahu, S. K., Mahapatra, S. K., Santra, S., Bal, M., Roy, S., & Pramanik, P. (2010). Nanoconjugated vancomycin: New opportunities for the development of anti-VRSA agents. Nanotechnology, 21(10), 105103. https://doi.org/10.1088/0957-4484/21/10/105103
  • Cheng, H. B., Cui, Y., Wang, R., Kwon, N., & Yoon, J. (2019). The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coordination Chemistry Reviews, 392, 237–254. https://doi.org/10.1016/j.ccr.2019.04.004
  • Chiaraviglio, L., & Kirby, J. E. (2014). Evaluation of impermeant, DNA-binding dye fluorescence as a real-time readout of eukaryotic cell toxicity in a high throughput screening format. Assay and Drug Development Technologies, 12(4), 219–228. https://doi.org/10.1089/adt.2014.577
  • Cruz, F. S., Lopes, L. A., De Souza, W., Moreno, S. N., Mason, R. P., & Docampo, R. (1984). The photodynamic action of Rose Bengal on Trypanosoma cruzi. Acta Tropica, 41(2), 99–108.
  • Culp, S. J., & Beland, F. A. (1996). Malachite green: A toxicological review. Journal of the American College of Toxicology, 15(3), 219–238. https://doi.org/10.3109/10915819609008715
  • Dahl, T., Midden, W. R., & Neckers, D. C. (1988). Comparison of photodynamic action by Rose Bengal in gram‐positive and gram‐negative bacteria. Photochemistry and Photobiology, 48(5), 607–612. https://doi.org/10.1111/j.1751-1097.1988.tb02870.x
  • El‐Ghamry, H. A., Fathalla, S. K., & Gaber, M. (2018). Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. Applied Organometallic Chemistry, 32(3), e4136. https://doi.org/10.1002/aoc.4136
  • Fleming, G. R., Knight, A. W. E., Morris, J. M., Morrison, R. J. S., & Robinson, G. W. (1977). Picosecond fluorescence studies of xanthene dyes. Journal of the American Chemical Society, 99(13), 4306–4311. https://doi.org/10.1021/ja00455a017
  • Gupta, N., Pandya, P., & Verma, S. (2018). Computational predictions for multi-target drug design. In Multi-target drug design using chem-bioinformatic approaches (pp. 27–50). Humana Press. https://doi.org/10.1007/7653_2018_26
  • Ha, J. H., Spolar, R. S., & Record, M. T., Jr. (1989). Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. Journal of Molecular Biology, 209(4), 801–816. https://doi.org/10.1016/0022-2836(89)90608-6
  • Haq, I. (2002). Thermodynamics of drug DNA interactions. Archives of Biochemistry and Biophysics, 403(1), 1–15. https://doi.org/10.1016/S0003-9861(02)00202-3
  • Islam, M. M., Chakraborty, M., Pandya, P., Al Masum, A., Gupta, N., & Mukhopadhyay, S. (2013). Binding of DNA with Rhodamine B: Spectroscopic and molecular modeling studies. Dyes and Pigments, 99(2), 412–422. https://doi.org/10.1016/j.dyepig.2013.05.028
  • Islam, M. M., Chowdhury, S. R., & Kumar, G. S. (2009). Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. The Journal of Physical Chemistry B, 113(4), 1210–1224. https://doi.org/10.1021/jp806597w
  • Lenard, J., Rabson, A., & Vanderoef, R. (1993). Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and Rose Bengal: Inhibition of fusion and syncytia formation. Proceedings of the National Academy of Sciences of the United States of America, 90(1), 158–162. https://doi.org/10.1073/pnas.90.1.158
  • Masum, A. A., Chakraborty, M., Pandya, P., Halder, U. C., Islam, M. M., & Mukhopadhyay, S. (2014). Thermodynamic study of rhodamine 123-calf thymus DNA interaction: Determination of calorimetric enthalpy by optical melting study. The Journal of Physical Chemistry B, 118(46), 13151–13161. https://doi.org/10.1021/jp509326r
  • Maurye, P., Basu, A., Biswas, J. K., & Bandyopadhyay, T. K. (2017). Electrophoresis-staining apparatus for DNA agarose gels with solution exchange and image acquisition. Instrumentation Science & Technology, 45(1), 49–61. https://doi.org/10.1080/10739149.2016.1206926
  • Mohammad, M., Al Rasid Gazi, H., Pandav, K., Pandya, P., & Islam, M. M. (2021). Evidence for dual site binding of nile blue a toward DNA: Spectroscopic, thermodynamic, and molecular modeling studies. ACS Omega, 6(4), 2613–2625. https://doi.org/10.1021/acsomega.0c04775
  • Pandya, P., Agarwal, L. K., Gupta, N., & Pal, S. (2014). Molecular recognition pattern of cytotoxic alkaloid vinblastine with multiple targets. Journal of Molecular Graphics & Modelling, 54, 1–9. https://doi.org/10.1016/j.jmgm.2014.09.001
  • Record, M. T., Anderson, C. F., & Lohman, T. M. (1978). Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: The roles of ion association or release, screening, and ion effects on water activity. Quarterly Reviews of Biophysics, 11(2), 103–178. https://doi.org/10.1017/s003358350000202x
  • Redasani, V. K., Patel, P. R., Marathe, D. Y., Chaudhari, S. R., Shirkhedkar, A. A., & Surana, S. J. (2018). A Review on derivative UV-spectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review. Journal of the Chilean Chemical Society, 63(3), 4126–4134. https://doi.org/10.4067/s0717-97072018000304126
  • Redmond, R. W., & Kochevar, I. E. (2019). Medical applications of Rose Bengal‐and riboflavin‐photosensitized protein crosslinking. Photochemistry and Photobiology, 95(5), 1097–1115. https://doi.org/10.1111/php.13126
  • Roat, M. I., Romanowski, E., Araullo-Cruz, T., & Gordon, Y. J. (1987). The antiviral effects of Rose Bengal and Fluorescein. Archives of Ophthalmology (Chicago, IL: 1960), 105(10), 1415–1417. https://doi.org/10.1001/archopht.1987.01060100117039
  • Sarkar, S., Pandya, P., & Bhadra, K. (2014). Sequence specific binding of beta carboline alkaloid harmalol with deoxyribonucleotides: Binding heterogeneity, conformational, thermodynamic and cytotoxic aspects. PLoS One., 9(9), e108022. https://doi.org/10.1371/journal.pone.0108022
  • Savarese, M., Aliberti, A., De Santo, I., Battista, E., Causa, F., Netti, P. A., & Rega, N. (2012). Fluorescence lifetimes and quantum yields of rhodamine derivatives: New insights from theory and experiment. The Journal of Physical Chemistry A, 116(28), 7491–7497. https://doi.org/10.1021/jp3021485
  • Seybold, P. G., Gouterman, M., & Callis, J. (1969). Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochemistry and Photobiology, 9(3), 229–242. https://doi.org/10.1111/j.1751-1097.1969.tb07287.x
  • Shi, C., Wu, J. B., & Pan, D. (2016). Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. Journal of Biomedical Optics, 21(5), 50901. https://doi.org/10.1117/1.JBO.21.5.050901
  • Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology (Amsterdam, Netherlands), 66(3), 319–329. https://doi.org/10.1016/j.aquatox.2003.09.008
  • Stein, L. (1957). Ophthalmoluminescence: Definitions and descriptions of effects. American Journal of Ophthalmology, 44(3), 360–372. https://doi.org/10.1016/0002-9394(57)92768-X
  • Taniguchi, M., & Lindsey, J. S. (2018). Database of absorption and fluorescence spectra of > 300 common compounds for use in photochem CAD. Photochemistry and Photobiology, 94(2), 290–327. https://doi.org/10.1111/php.12860
  • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Urdaneta, I. (2001). Fluorescence quantum yield of rhodamine 101 in the presence of absorption saturation. Applied Physics B, 72(2), 207–213. https://doi.org/10.1007/s003400000423
  • Valenzeno, D. P., Trudgen, J., Hutzenbuhler, A., & Milne, M. (1987). Singlet oxygen involvement in photohemolysis sensitized by merocyanine‐540 and Rose Bengal. Photochemistry and Photobiology, 46(6), 985–990. https://doi.org/10.1111/j.1751-1097.1987.tb04881.x
  • Vanerio, N., Stijnen, M., de Mol, B. A., & Kock, L. M. (2019). Biomedical applications of photo-and sono-activated Rose Bengal: A review. Photobiomodulation, Photomedicine, and Laser Surgery, 37(7), 383–394. https://doi.org/10.1089/photob.2018.4604
  • Venugopal, N., Krishnamurthy, G., Naik, H. B., & Manohara, J. D. (2020). DNA binding, molecular docking and antimicrobial evaluation of novel azo dye ligand and their metal complexes. Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2608–2618. https://doi.org/10.1007/s10904-019-01394-8
  • Wahbi, A. M., & Ebel, S. (1974). The use of the first-derivative curves of absorption spectra in quantitative analysis. Analytica Chimica Acta, 70(1), 57–63. https://doi.org/10.1016/S0003-2670(01)82910-X
  • Walthall, W. K., & Stark, J. D. (1999). The acute and chronic toxicity of two xanthene dyes, fluorescein sodium salt and phloxine B, to Daphnia pulex. Environmental Pollution, 104(2), 207–215. https://doi.org/10.1016/S0269-7491(98)00189-4
  • Xie, P., Zhu, Y., Huang, X., Gao, G., Wei, F., Guo, F., Jiang, S., & Wang, C. (2019). A novel probe based on rhodamine 101 spirolactam and 2-(2′-hydroxy-5′-methylphenyl) benzothiazole moieties for three-in-one detection of paramagnetic Cu2+, Co2+ and Ni2+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117171. https://doi.org/10.1016/j.saa.2019.117171
  • Yang, T., Zuo, Y., Zhang, Y., Gou, Z., & Lin, W. (2019). Novel polysiloxane-based rhodamine B fluorescent probe for selectively detection of Al3+ and its application in living-cell and zebrafish imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 216, 207–213. https://doi.org/10.1016/j.saa.2019.01.093
  • Zarrintaj, P., Ahmadi, Z., Hosseinnezhad, M., Saeb, M. R., Laheurte, P., & Mozafari, M. (2018). Photosensitizers in medicine: Does nanotechnology make a difference? Materials Today: Proceedings, 5(7), 15836–15844. https://doi.org/10.1016/j.matpr.2018.05.082
  • Zhang, Q., & Wong, K. M. C. (2020). Photophysical, ion-sensing and biological properties of rhodamine-containing transition metal complexes. Coordination Chemistry Reviews, 416, 213336. https://doi.org/10.1016/j.ccr.2020.213336
  • Zheng, L., & Hu, Y. (2009). The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection. International Symposium on Photoelectronic Detection and Imaging 2009, Beijing, China (Vol. 7382, p. 73821B). https://doi.org/10.1117/12.835110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.