196
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Absorption of daunorubicin and etoposide drugs by hydroxylated and carboxylated carbon nanotube for drug delivery: theoretical and experimental studies

, &
Pages 10057-10064 | Received 21 Mar 2021, Accepted 30 May 2021, Published online: 24 Jun 2021

References

  • Al-Qattan, M. N., Deb, P. K., & Tekade, R. K. (2018). Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discovery Today., 23(2), 235–250. https://doi.org/10.1016/j.drudis.2017.10.002
  • Aqel, A., El-Nour, K. M. A., Ammar, R. A., & Al-Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1–23. https://doi.org/10.1016/j.arabjc.2010.08.022
  • Baldwin, E. L., & Osheroff, N. (2005). Etoposide, topoisomerase II and cancer. Current Medicinal Chemistry-Anti-Cancer Agents, 5(4), 363–372. https://doi.org/10.2174/1568011054222364
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 9(6), 674–679. https://doi.org/10.1016/j.cbpa.2005.10.005
  • Contreras, M. L., Torres, C., Villarroel, I., & Rozas, R. (2019). Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems. Structural Chemistry, 30(1), 369–384. https://doi.org/10.1007/s11224-018-1210-5
  • Cortes, J., Estey, E., O'Brien, S., Giles, F., Shen, Y., Koller, C., Beran, M., Thomas, D., Keating, M., & Kantarjian, H. (2001). High‐dose liposomal daunorubicin and high‐dose cytarabine combination in patients with refractory or relapsed acute myelogenous leukemia. Cancer, 92(1), 7–14. https://doi.org/10.1002/1097-0142(20010701)92:1<7::AID-CNCR1285>3.0.CO;2-D
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Frey, J. T., & Doren, D. J. (2011). TubeGen 3.4. University of Delaware. Retrieved from http://turin.nss.udel.edu/research/tubegenonline.html
  • Frisch, M. J. (1998). Gaussian 98. Gaussian, Inc.
  • Froimowitz, M. (1993). HyperChem: A software package for computational chemistry and molecular modeling. Biotechniques, 14(6), 1010–1013.
  • GROMACS ( 2020). GROMACS 2020.2 Manual (Lindahl; Abraham; Hess; van der Spoel). https://doi.org/10.5281/zenodo.3562512
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC, 8, 37.
  • Humphrey, D. & Schulten, V. M. D. (1996). Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Khatti, Z., Hashemianzadeh, S. M., & Shafiei, S. A. (2018). A molecular study on drug delivery system based on carbon nanotube compared to silicon carbide nanotube for encapsulation of platinum-based anticancer drug. Advanced Pharmaceutical Bulletin, 8(1), 163–167. https://doi.org/10.15171/apb.2018.020
  • Kordzadeh, A., Amjad-Iranagh, S., Zarif, M., & Modarress, H. (2019). Adsorption and encapsulation of the drug doxorubicin on covalently functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation. Journal of Molecular Graphics and Modelling, 88, 11–22. https://doi.org/10.1016/j.jmgm.2018.12.009
  • Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., & Prato, M. (2007). Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2(2), 108–113. https://doi.org/10.1038/nnano.2006.209
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium., & Lynn, A. (2014). g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., & Dai, H. (2008). Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 68(16), 6652–6660. https://doi.org/10.1158/0008-5472.CAN-08-1468
  • Liu, Z., Robinson, J. T., Tabakman, S. M., Yang, K., & Dai, H. (2011). Carbon materials for drug delivery & cancer therapy. Materials Today, 14(7-8), 316–323. https://doi.org/10.1016/S1369-7021(11)70161-4
  • Liu, Z., Sun, X., Nakayama-Ratchford, N., & Dai, H. (2007). Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 1(1), 50–56. https://doi.org/10.1021/nn700040t
  • Mansouri, A., & Mahnam, K. (2017). Designing new surfactant peptides for binding to carbon nanotubes via computational approaches. Journal of Molecular Graphics and Modelling, 74, 61–72. https://doi.org/10.1016/j.jmgm.2017.02.016
  • Mejri, A., Vardanega, D., Tangour, B., Gharbi, T., & Picaud, F. (2015). Encapsulation into carbon nanotubes and release of anticancer cisplatin drug molecule. The Journal of Physical Chemistry B, 119(2), 604–611. https://doi.org/10.1021/jp5102384
  • Panczyk, T., Wolski, P., & Lajtar, L. (2016). Coabsorption of doxorubicin and selected dyes on carbon nanotubes. theoretical investigation of potential application as a pH-controlled drug delivery system. Langmuir, 32(19), 4719–4728. https://doi.org/10.1021/acs.langmuir.6b00296
  • Razavilar, N. (2015). Design of macromolecular delivery systems using molecular dynamics simulation. Retrieved from https://era.library.ualberta.ca/items/ca4f07b2-c644-4c64-8489-cc1457132af1
  • Reinhardt, D., Hempel, G., Fleischhack, G., Schulz, A., Boos, J., & Creutzig, U. (2002). Liposomal daunorubicin combined with cytarabine in the treatment of relapsed/refractory acute myeloid leukemia in children. Klinische Pädiatrie, 214(4), 188–194. https://doi.org/10.1055/s-2002-33185
  • Rezaian, M., Maleki, R., Dahri Dahroud, M., Alamdari, A., & Alimohammadi, M. (2018). pH-sensitive co-adsorption/release of doxorubicin and paclitaxel by carbon nanotube, fullerene, and graphene oxide in combination with N-isopropylacrylamide: A molecular dynamics study. Biomolecules, 8(4), 127. https://doi.org/10.3390/biom8040127
  • Rungnim, C., Rungrotmongkol, T., & Poo-Arporn, R. P. (2016). pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. Journal of Molecular Graphics and Modelling, 70, 70–76. https://doi.org/10.1016/j.jmgm.2016.09.011
  • Saifuddin, N., Raziah, A. Z., & Junizah, A. R. (2012). Carbon nanotubes: A review on the structure and their interaction with proteins. Journal of Chemistry, 2013.
  • Saikia, N. (2017). Functionalized carbon nanomaterials in drug delivery: Emergent perspectives from application. In G. Z. Kyzas & A. C. Mitropoulos (Eds.) Novel Nanomaterials - Synthesis and Applications. IntechOpen.
  • Sudhakar, A. (2009). History of cancer, ancient and modern treatment methods. Journal of Cancer Science & Therapy, 1(2), 1. https://doi.org/10.4172/1948-5956.100000e2
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46, D1047–D1082. https://doi.org/10.1093/nar/gkx1037
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam, a fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.