276
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigations on the binding specificity of β-galactoside analogues with human galectin-1 using molecular dynamics simulations

, , &
Pages 10094-10105 | Received 08 Feb 2021, Accepted 02 Jun 2021, Published online: 05 Jul 2021

References

  • Arifuzzaman, M., Hamza, A., Zannat, S. S., Fahad, R., Rahman, A., Hosen, S. Z., Dash, R., & Hossain, M. K. (2020). Targeting galectin-3 by natural glycosides: A computational approach. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 1–15. https://doi.org/10.1007/s13721-020-0219-z
  • Bahar, I., Atilgan, A. R., Demirel, M. C., & Erman, B. (1998). Vibrational dynamics of folded proteins: Significance of slow and fast motions in relation to function and stability. Physical Review Letters, 80(12), 2733–2736. https://doi.org/10.1103/PhysRevLett.80.2733
  • Beigoli, S., Sharifi Rad, A., Askari, A., Assaran Darban, R., & Chamani, J. (2019). Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. Journal of Biomolecular Structure and Dynamics, 37(9), 2265–2282. https://doi.org/10.1080/07391102.2018.1491421
  • Blanchard, H., Bum-Erdene, K., Bohari, M. H., & Yu, X. (2016). Galectin-1 inhibitors and their potential therapeutic applications: A patent review. Expert Opinion on Therapeutic Patents, 26(5), 537–554. https://doi.org/10.1517/13543776.2016.1163338
  • Blaser, C., Kaufmann, M., Müller, C., Zimmermann, C., Wells, V., Mallucci, L., & Pircher, H. (1998). β-Galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. European Journal of Immunology, 28(8), 2311–2319. https://doi.org/10.1002/(SICI)1521-4141(199808)28:08<2311::AID-IMMU2311>3.0.CO;2-G
  • Blessy, J. J., & Sharmila, D. J. S. (2015). Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin-a molecular dynamics study. Glycoconjugate Journal, 32(1–2), 49–67. https://doi.org/10.1007/s10719-014-9570-6
  • Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Costanzo, L. D., Christie, C., Duarte, J. M., Dutta, S., Feng, Z., & Ghosh, S. (2018). Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Research, 47, D520–D528.
  • Camby, I., Le Mercier, M., Lefranc, F., & Kiss, R. (2006). Galectin-1: A small protein with major functions. Glycobiology, 16(11), 137R–157R. https://doi.org/10.1093/glycob/cwl025
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., & Izadi, S. (2016). AMBER 2016 Reference Manual (pp. 1–923). University of California.
  • Chen, I. J., & Foloppe, N. (2010). Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: Comparison to programs MOE and catalyst. Journal of Chemical Information and Modeling, 50(5), 822–839. https://doi.org/10.1021/ci100026x
  • Cummings, R. D., Liu, F. T., & Vasta, G. R. (2017). Galectins. In A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of glycobiology (3rd ed., pp. 2015–2017). Cold Spring Harbor Laboratory Press.
  • Cumpstey, I., Carlsson, S., Leffler, H., & Nilsson, U. J. (2005). Synthesis of a phenyl thio-β-D-galactopyranoside library from 1, 5-difluoro-2, 4-dinitrobenzene: Discovery of efficient and selective monosaccharide inhibitors of galectin-7. Organic & Biomolecular Chemistry, 3(10), 1922–1932. https://doi.org/10.1039/b502354h
  • Danesh, N., Navaee Sedighi, Z., Beigoli, S., Sharifi-Rad, A., Saberi, M. R., & Chamani, J. (2018). Determining the binding site and binding affinity of estradiol to human serum albumin and holo-transferrin: Fluorescence spectroscopic, isothermal titration calorimetry and molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 36(7), 1747–1763. https://doi.org/10.1080/07391102.2017.1333460
  • Di Lella, S., Sundblad, V., Cerliani, J. P., Guardia, C. M., Estrin, D. A., Vasta, G. R., & Rabinovich, G. A. (2011). When galectins recognize glycans: From biochemistry to physiology and back again. Biochemistry, 50(37), 7842–7857. https://doi.org/10.1021/bi201121m
  • Dings, R. P., Miller, M. C., Griffin, R. J., & Mayo, K. H. (2018). Galectins as molecular targets for therapeutic intervention. International Journal of Molecular Sciences, 19(3), 905. https://doi.org/10.3390/ijms19030905
  • Duke, R. E., & Pedersen, L. G. (2003). PMEMD 3. University of North Carolina-Chapel Hill.
  • Eisold, A., & Labudde, D. (2018). Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules, 23(7), 1690. https://doi.org/10.3390/molecules23071690
  • Ford, M. G., Weimar, T., Köhli, T., & Woods, R. J. (2003). Molecular dynamics simulations of galectin‐1‐oligosaccharide complexes reveal the molecular basis for ligand diversity. Proteins: Structure, Function, and Bioinformatics, 53(2), 229–240. https://doi.org/10.1002/prot.10428
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • He, L., André, S., Siebert, H. C., Helmholz, H., Niemeyer, B., & Gabius, H. J. (2003). Detection of ligand-and solvent-induced shape alterations of cell-growth-regulatory human lectin galectin-1 in solution by small angle neutron and x-ray scattering. Biophysical Journal, 85(1), 511–524. https://doi.org/10.1016/S0006-3495(03)74496-8
  • Hsieh, T. J., Lin, H. Y., Tu, Z., Lin, T. C., Wu, S. C., Tseng, Y. Y., Liu, F. T., Hsu, S. T. D., & Lin, C. H. (2016). Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Scientific Reports, 6(1), 29457. https://doi.org/10.1038/srep29457
  • Jain, M., Muthukumaran, J., & Singh, A. K. (2020). Structural and functional characterization of chitin binding lectin from Datura stramonium: Insights from phylogenetic analysis, protein structure prediction, molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 39(5), 1698–1619. https://doi.org/10.1080/07391102.2020.1737234
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Kamshad, M., Jahanshah Talab, M., Beigoli, S., Sharifirad, A., & Chamani, J. (2019). Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. Journal of Biomolecular Structure and Dynamics, 37(8), 2030–2040. https://doi.org/10.1080/07391102.2018.1475258
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3), 402–406. https://doi.org/10.1016/S0959-440X(96)80061-3
  • López-Lucendo, M. F., Solís, D., André, S., Hirabayashi, J., Kasai, K. I., Kaltner, H., Gabius, H. J., & Romero, A. (2004). Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. Journal of Molecular Biology, 343(4), 957–970. https://doi.org/10.1016/j.jmb.2004.08.078
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández, C. X., Schwantes, C. R., Wang, L. P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophysical Journal, 109(8), 1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015
  • Meynier, C., Feracci, M., Espeli, M., Chaspoul, F., Gallice, P., Schiff, C., Guerlesquin, F., & Roche, P. (2009). NMR and MD investigations of human galectin-1/oligosaccharide complexes. Biophysical Journal, 97(12), 3168–3177. https://doi.org/10.1016/j.bpj.2009.09.026
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Miller, M. C., Nesmelova, I. V., Platt, D., Klyosov, A., & Mayo, K. H. (2009). The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: Implications for galectin–glycan interactions at the cell surface. Biochemical Journal, 421(2), 211–221. https://doi.org/10.1042/BJ20090265
  • Mokaberi, P., Reyhani, V., Amiri-Tehranizadeh, Z., Saberi, M. R., Beigoli, S., Samandar, F., & Chamani, J. (2019). New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: Binary and ternary approaches. New Journal of Chemistry, 43(21), 8132–8145. https://doi.org/10.1039/C9NJ01048C
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand‐receptor docking. Current Protocols in Bioinformatics, 24(1), 8–14. https://doi.org/10.1002/0471250953.bi0814s24
  • Mukherjee, R., & Yun, J. W. (2015). Lactobionic acid reduces body weight gain in dietinduced obese rats by targeted inhibition of galectin-1. Biochemical and Biophysical Research Communications, 463(4), 1311–1316. https://doi.org/10.1016/j.bbrc.2015.06.114
  • Nesmelova, I. V., Ermakova, E., Daragan, V. A., Pang, M., Menéndez, M., Lagartera, L., Solís, D., Baum, L. G., & Mayo, K. H. (2010). Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity. Journal of Molecular Biology, 397(5), 1209–1230. https://doi.org/10.1016/j.jmb.2010.02.033
  • Parasuraman, P., Murugan, V., Selvin, J. F., Gromiha, M. M., Fukui, K., & Veluraja, K. (2015). Theoretical investigation on the glycan‐binding specificity of Agrocybe cylindracea galectin using molecular modeling and molecular dynamics simulation studies. Journal of Molecular Recognition, 28(9), 528–538. https://doi.org/10.1002/jmr.2468
  • Rubinstein, N., Alvarez, M., Zwirner, N. W., Toscano, M. A., Ilarregui, J. M., Bravo, A., Mordoh, J., Fainboim, L., Podhajcer, O. L., & Rabinovich, G. A. (2004). Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege. Cancer Cell, 5(3), 241–251. https://doi.org/10.1016/S1535-6108(04)00024-8
  • Salameh, B. A., Leffler, H., & Nilsson, U. J. (2005). 3-(1, 2, 3-Triazol-1-yl)-1-thio-galactosides as small, efficient, and hydrolytically stable inhibitors of galectin-3. Bioorganic & Medicinal Chemistry Letters, 15(14), 3344–3346. https://doi.org/10.1016/j.bmcl.2005.05.084
  • Saraboji, K., Håkansson, M., Genheden, S., Diehl, C., Qvist, J., Weininger, U., Nilsson, U. J., Leffler, H., Ryde, U., Akke, M., & Logan, D. T. (2012). The carbohydrate-binding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: Ultra-high-resolution structures and water dynamics. Biochemistry, 51(1), 296–306. https://doi.org/10.1021/bi201459p
  • Satelli, A., Rao, P. S., Gupta, P. K., Lockman, P. R., Srivenugopal, K. S., & Rao, U. S. (2008). Varied expression and localization of multiple galectins in different cancer cell lines. Oncology Reports, 19, 587–594.
  • Schwarz, F. P., Ahmed, H., Bianchet, M. A., Amzel, L. M., & Vasta, G. R. (1998). Thermodynamics of bovine spleen galectin-1 binding to disaccharides: Correlation with structure and its effect on oligomerization at the denaturation temperature. Biochemistry, 37(17), 5867–5877. https://doi.org/10.1021/bi9716478
  • Shakibapour, N., Dehghani Sani, F., Beigoli, S., Sadeghian, H., & Chamani, J. (2019). Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches. Journal of Biomolecular Structure and Dynamics, 37(2), 359–371. https://doi.org/10.1080/07391102.2018.1427629
  • Shanmugam, N. R. S., Blessy, J. J., Veluraja, K., & Gromiha, M. M. (2020). ProCaff: Protein-carbohydrate complex binding affinity database. Bioinformatics, 36(11), 3615–3617. https://doi.org/10.1093/bioinformatics/btaa141
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure and Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Sharmila, D. J. S., & Blessy, J. J. (2017). Molecular dynamics of sialic acid analogues complex with cholera toxin and DFT optimization of ethylene glycol-mediated zinc nanocluster conjugation. Journal of Biomolecular Structure and Dynamics, 35(1), 182–206. https://doi.org/10.1080/07391102.2015.1136689
  • Stannard, K. A., Collins, P. M., Ito, K., Sullivan, E. M., Scott, S. A., Gabutero, E., Darren Grice, I., Low, P., Nilsson, U. J., Leffler, H., Blanchard, H., & Ralph, S. J. (2010). Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Letters, 299(2), 95–110. https://doi.org/10.1016/j.canlet.2010.08.005
  • Stillman, B. N., Hsu, D. K., Pang, M., Brewer, C. F., Johnson, P., Liu, F. T., & Baum, L. G. (2006). Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. The Journal of Immunology, 176(2), 778–789. https://doi.org/10.4049/jimmunol.176.2.778
  • Tasumi, S., & Vasta, G. R. (2007). A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. The Journal of Immunology, 179(5), 3086–3098. https://doi.org/10.4049/jimmunol.179.5.3086
  • Tejler, J., Leffler, H., & Nilsson, U. J. (2005). Synthesis of O-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(9), 2343–2345. https://doi.org/10.1016/j.bmcl.2005.02.079
  • Than, N. G., Romero, R., Goodman, M., Weckle, A., Xing, J., Dong, Z., Xu, Y., Tarquini, F., Szilagyi, A., Gal, P., Hou, Z. (2009). A primate subfamily of galectins expressed at the maternal–fetal interface that promote immune cell death. Proceedings of the National Academy of Sciences, 106, 9731–9736.
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. (2019). Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics, 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Vasta, G. R., Ahmed, H., Nita-Lazar, M., Banerjee, A., Pasek, M., Shridhar, S., Guha, P., & Fernández-Robledo, J. A. (2012). Galectins as self/non-self recognition receptors in innate and adaptive immunity: An unresolved paradox. Frontiers in Immunology, 3, 199. https://doi.org/10.3389/fimmu.2012.00199
  • Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Current Topics in Medicinal Chemistry, 8(18), 1555–1572. https://doi.org/10.2174/156802608786786624
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., & Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 18(18), 12964–12975. https://doi.org/10.1039/C6CP01555G
  • Weng, G., Wang, E., Chen, F., Sun, H., Wang, Z., & Hou, T. (2019). Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. Physical Chemistry Chemical Physics, 21(19), 10135–10145. https://doi.org/10.1039/C9CP01674K
  • Wong, S. E., & Lightstone, F. C. (2011). Accounting for water molecules in drug design. Expert Opinion on Drug Discovery, 6(1), 65–74. https://doi.org/10.1517/17460441.2011.534452
  • Yadav, P., Shahane, G., & Gaikwad, S. (2018). Amaranthus caudatus lectin with polyproline II fold: Conformational and functional transitions and molecular dynamics. Journal of Biomolecular Structure and Dynamics, 36(9), 2203–2215. https://doi.org/10.1080/07391102.2017.1345328
  • Yongye, A. B., Calle, L., Ardá, A., Jiménez-Barbero, J., André, S., Gabius, H.-J., Martínez-Mayorga, K., & Cudic, M. (2012). Molecular recognition of the Thomsen-Friedenreich antigen–threonine conjugate by adhesion/growth regulatory galectin-3: Nuclear magnetic resonance studies and molecular dynamics simulations. Biochemistry, 51(37), 7278–7289. https://doi.org/10.1021/bi300761s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.