373
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparative genomics of Bordetella pertussis and prediction of new vaccines and drug targets

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10136-10152 | Received 02 Dec 2020, Accepted 03 Jun 2021, Published online: 22 Jun 2021

References

  • Achouak, W., Heulin, T., & Pagès, J. M. (2001). Multiple facets of bacterial porins. FEMS Microbiology Letters, 199(1), 1–7. https://doi.org/10.1111/j.1574-6968.2001.tb10642.x
  • Ågren, J., Sundström, A., Håfström, T., & Segerman, B. (2012). Gegenees: Fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One, 7(6), e39107. https://doi.org/10.1371/journal.pone.0039107
  • Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics, 12, 402. https://doi.org/10.1186/1471-2164-12-402
  • Anderson, M. T., & Armstrong, S. K. (2006). The Bordetella Bfe system: Growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. Journal of Bacteriology, 188(16), 5731–5740. https://doi.org/10.1128/JB.00495-06
  • Argondizo-Correia, C., Rodrigues, A. K. S., & De Brito, C. A. (2019). Neonatal Immunity to Bordetella pertussis Infection and Current Prevention Strategies. Journal of Immunology Research, 2019, 1–10. https://doi.org/10.1155/2019/7134168
  • Armstrong, S. K., Brickman, T. J., & Suhadolc, R. J. (2012). Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones. Molecular Microbiology, 84(3), 446–462. https://doi.org/10.1111/j.1365-2958.2012.08032.x
  • Barinov, A., Loux, V., Hammani, A., Nicolas, P., Langella, P., Ehrlich, D., Maguin, E., & van de Guchte, M. (2009). Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics, 9(1), 61–73. https://doi.org/10.1002/pmic.200800195
  • Barkoff, A.-M., Mertsola, J., Pierard, D., Dalby, T., Hoegh, S. V., Guillot, S., Stefanelli, P., van Gent, M., Berbers, G., Vestrheim, D., Greve-Isdahl, M., Wehlin, L., Ljungman, M., Fry, N. K., Markey, K., & He, Q. (2019). Pertactin-deficient Bordetella pertussis isolates: Evidence of increased circulation in Europe, 1998 to 2015. Eurosurveillance, 24(7). https://doi.org/10.2807/1560-7917.ES.2019.24.7.1700832
  • Bart, M. J., van Gent, M., van der Heide, H. G., Boekhorst, J., Hermans, P., Parkhill, J., & Mooi, F. R. (2010). Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-627
  • Beaman, T. W., Vogel, K. W., Drueckhammer, D. G., Blanchard, J. S., & Roderick, S. L. (2002). Acyl group specificity at the active site of tetrahydridipicolinate N-succinyltransferase. Protein Science: A Publication of the Protein Society, 11(4), 974–979. https://doi.org/10.1110/ps.4310102
  • Breakwell, L., Kelso, P., Finley, C., Schoenfeld, S., Goode, B., Misegades, L. K., Martin, S. W., & Acosta, A. M. (2016). Pertussis vaccine effectiveness in the setting of pertactin-deficient pertussis. Pediatrics, 137(5), e20153973–e20153973. https://doi.org/10.1542/peds.2015-3973
  • Capriles, P. V. S. Z., Guimarães, A. C. R., Otto, T. D., Miranda, A. B., Dardenne, L. E., & Degrave, W. M. (2010). Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: Putative drug targets for chagas’ disease treatment. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-610
  • Cavasotto, C. N., & Aucar, M. G. (2020). High-throughput docking using quantum mechanical scoring. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.00246.
  • Cody, C. L., Baraff, L. J., Cherry, J. D., Marcy, S. M., & Manclark, C. R. (1981). Nature and rates of adverse reactions associated with DTP and DT immunizations in infants and children. Pediatrics, 68(5), 650–660. https://pubmed.ncbi.nlm.nih.gov/7031583/.
  • Cummings, C. A., Brinig, M. M., Lepp, P. W., Van De Pas, S., & Relman, D. A. (2004). Bordetella Species Are distinguished by patterns of substantial gene loss and host adaptation. Journal of Bacteriology, 186(5), 1484–1492. https://doi.org/10.1128/JB.186.5.1484-1492.2004
  • Cuthbertson, L., & Nodwell, J. R. (2013). The TetR family of regulators. Microbiology and Molecular Biology Reviews: MMBR, 77(3), 440–475. https://doi.org/10.1128/MMBR.00018-13
  • Darling, A. E., Mau, B., & Perna, N. T. (2010). Progressivemauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS One, 5(6), e11147. https://doi.org/10.1371/journal.pone.0011147
  • Davidson, A. L., Dassa, E., Orelle, C., & Chen, J. (2008). Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiology and Molecular Biology Reviews: MMBR, 72(2), 317–364. https://doi.org/10.1128/MMBR.00031-07
  • Decker, M. D., Edwards, K. M., Steinhoff, M. C., Rennels, M. B., Pichichero, M. E., Englund, J. A., Anderson, E. L., Deloria, M. A., & Reed, G. F. (1995). Comparison of 13 acellular pertussis vaccines: Adverse reactions. Pediatrics, 96(3 Pt 2), 557–566. https://pubmed.ncbi.nlm.nih.gov/7659476/.
  • DeCs. (2017). Health Sciences Descriptors: Decs. ed São Paulo BIREME/PAHO/WHO [Internet]. http://decs.bvsalud.org/I/homepagei.htm.
  • Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16(1). https://doi.org/10.1186/s13059-015-0721-2
  • Emsley, P., Charles, I. G., Fairweather, N. F., & Isaacs, N. W. (1996). Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature, 381(6577), 90–92. https://doi.org/10.1038/381090a0
  • Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., & Rarey, M. (2017). Proteins plus: A web portal for structure analysis of macromolecules. Nucleic Acids Research, 45(W1), W337–W343. https://doi.org/10.1093/nar/gkx333
  • Field, D., Wilson, G., & van der Gast, C. (2006). How do we compare hundreds of bacterial genomes? Current Opinion in Microbiology, 9(5), 499–504. https://doi.org/10.1016/j.mib.2006.08.008
  • Finn, T. M., Li, Z., & Kocsis, E. (1995). Identification of a Bordetella pertussis bvg-regulated porin-like protein. Journal of Bacteriology, 177(3), 805–809. https://doi.org/10.1128/jb.177.3.805-809.1995
  • Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R., & Kelly, D. J. (1997). TRAP transporters: A new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. Journal of Bacteriology, 179(17), 5482–5493. https://doi.org/10.1128/jb.179.17.5482-5493.1997
  • Garrett, M. M., Ruth, H., William, L., Michel, F. S., Richard, K. B., & S. G, D. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–5791. https://doi.org/10.1002/jcc.21256.
  • Guiso, N. (2009). Bordetella pertussis and Pertussis Vaccines. Clinical Infectious Diseases, 49(10), 1565–1569. https://doi.org/10.1086/644733
  • He, Y., Xiang, Z., & Mobley, H. L. T. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010, 1–15. https://doi.org/10.1155/2010/297505
  • Holmes, R. K. (2000). Biology and molecular epidemiology of diphtheria toxin and the tox gene. The Journal of Infectious Diseases, 181(s1), S156–S167. https://doi.org/10.1086/315554
  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. https://doi.org/10.1093/molbev/msj030
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Jaiswal, A. K., Tiwari, S., Jamal, S. B., Barh, D., Azevedo, V., & Soares, S. C. (2017). An in silico identification of common putative vaccine candidates against treponema pallidum: A reverse vaccinology and subtractive genomics based approach. International Journal of Molecular Sciences, 18(2), 402. https://doi.org/10.3390/ijms18020402
  • Jensen, R. A., Xie, G., Calhoun, D. H., & Bonner, C. A. (2002). The correct phylogenetic relationship of KdsA (3-deoxy-D-manno-octulosonate 8-phosphate synthase) with one of two independently evolved classes of AroA (3-deoxy-D-arabino-heptulosonate 7-phosphate synthase). Journal of Molecular Evolution, 54(3), 416–423. [2]. https://doi.org/10.1007/s00239-001-0031-z
  • Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics (Oxford, England), 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
  • Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., Kothari, A., Keseler, I. M., Krummenacker, M., Midford, P. E., Ong, Q., Ong, W. K., Paley, S. M., & Subhraveti, P. (2019). The BioCyc collection of microbial genomes and metabolic pathways. Briefings in Bioinformatics, 20(4), 1085–1093. https://doi.org/10.1093/bib/bbx085
  • Knirel’, I. A., & Kochetkov, N. K. (1994). Stroenie lipopolisakharidov gramotritsatel’nykh bakteriǐ. III. Struktura O-spetsificheskikh polisakharidov. Biokhimiya, 59(12), 1784–1851.
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Leive, L. (1965). Release of lipopolysaccharide by EDTA treatment of E., coli. Biochemical and Biophysical Research Communications, 21(4), 290–296. https://doi.org/10.1016/0006-291X(65)90191-9
  • Li, J., Fairweather, N. F., Novotny, P., Dougan, G., & Charles, I. G. (1992). Cloning, nucleotide sequence and heterologous expression of the protective outer-membrane protein P.68 pertactin from Bordetella bronchiseptica. Journal of General Microbiology, 138(8), 1697–1705. https://doi.org/10.1099/00221287-138-8-1697
  • Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080
  • Liu, Y. Y., Chiou, C. S., & Chen, C. C. (2016). PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing. Scientific Reports, 6, 36213. https://doi.org/10.1038/srep36213
  • Liu, Y., White, R. H., & Whitman, W. B. (2010). Methanococci use the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis. Journal of Bacteriology, 192(13), 3304–3310. https://doi.org/10.1128/JB.00172-10
  • Loomis, W. F., Shaulsky, G., & Wang, N. (1997). Histidine kinases in signal transduction pathways of eukaryotes. Journal of Cell Science, 110(10), 1141–1145. https://doi.org/10.1242/jcs.110.10.1141
  • Luo, H., Quan, C. L., Peng, C., & Gao, F. (2019). Recent development of Ori-Finder system and DoriC database for microbial replication origins. Briefings in Bioinformatics, 20(4), 1114–1124. https://doi.org/10.1093/bib/bbx174
  • Luo, H., Zhang, C. T., & Gao, F. (2014). Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Frontiers in Microbiology, 5(SEP). https://doi.org/10.3389/fmicb.2014.00482
  • Maharjan, R. P., Gu, C., Reeves, P. R., Sintchenko, V., Gilbert, G. L., & Lan, R. (2008). Genome-wide analysis of single nucleotide polymorphisms in Bordetella pertussis using comparative genomic sequencing. Research in Microbiology, 159(9–10), 602–608. https://doi.org/10.1016/j.resmic.2008.08.004
  • Malinverni, J. C., & Silhavy, T. J. (2009). An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 8009–8014. https://doi.org/10.1073/pnas.0903229106
  • Mooi, F. R., Van Oirschot, H., Heuvelman, K., Van der Heide, H. G. J., Gaastra, W., & Willems, R. J. L. (1998). Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: Temporal trends and evidence for vaccine-driven evolution. Infection and Immunity, 66(2), 670–675. https://doi.org/10.1128/IAI.66.2.670-675.1998
  • Mulligan, C., Fischer, M., & Thomas, G. H. (2011). Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiology Reviews, 35(1), 68–86. https://doi.org/10.1111/j.1574-6976.2010.00236.x
  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews: MMBR, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  • Nikaido, H. (2005). Restoring permeability barrier function to outer membrane. Chemistry & Biology, 12(5), 507–509. https://doi.org/10.1016/j.chembiol.2005.05.001
  • Oleg, T., & AutoDock Vina, A. J. O. (2010). Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • Parkhill, J., Sebaihia, M., Preston, A., Murphy, L. D., Thomson, N., Harris, D. E., Holden, M. T. G., Churcher, C. M., Bentley, S. D., Mungall, K. L., Cerdeño-Tárraga, A. M., Temple, L., James, K., Harris, B., Quail, M. A., Achtman, M., Atkin, R., Baker, S., Basham, D., … Maskell, D. J. (2003). Comparative analysis of the genome sequences of Bordetella pertussis, bordetella parapertussis and bordetella bronchiseptica. Nature Genetics, 35(1), 32–40. https://doi.org/10.1038/ng1227
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pizza, M., Grandi, G., Telford, J. L., & Rappuoli, R. (2002). Reverse vaccinology: A genome-based approach to vaccine development. Chimica Oggi – Chemistry Today, 20(7–8), 32–36. https://doi.org/10.1016/S0264-410X(00)00554-5.
  • Rodriguez-R, L., & Konstantinidis, K. (2016). The enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. PeerL Preprints. https://doi.org/10.7287/PEERJ.PREPRINTS.1900V1.
  • Roy, C. R., Miller, J. F., & Falkow, S. (1989). The bvgA gene of Bordetella pertussis encodes a transcriptional activator required for coordinate regulation of several virulence genes. Journal of Bacteriology, 171(11), 6338–6344. https://doi.org/10.1128/jb.171.11.6338-6344.1989
  • Saier, M. H. (2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiology and Molecular Biology Reviews: MMBR, 64(2), 354–411. https://doi.org/10.1128/MMBR.64.2.354-411.2000
  • Schatzmayr, H. G. (2003). New perspectives in viral vaccines. Historia, Ciencias, Saude-Manguinhos, 10(Suppl 2), 655–669. https://doi.org/10.1590/S0104-59702003000500010
  • Shende, G., Haldankar, H., Barai, R. S., Bharmal, M. H., Shetty, V., & Idicula-Thomas, S. (2017). PBIT: Pipeline builder for identification of drug targets for infectious diseases. Bioinformatics (Oxford, England), 33(6), 929–931. https://doi.org/10.1093/bioinformatics/btw760
  • Siezen, R. J., Bayjanov, J. R., Felis, G. E., van der Sijde, M. R., Starrenburg, M., Molenaar, D., Wels, M., van Hijum, S. A. F. T., & van Hylckama Vlieg, J. E. T. (2011). Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microbial Biotechnology, 4(3), 383–402. https://doi.org/10.1111/j.1751-7915.2011.00247.x
  • Sivashankari, S., & Shanmughavel, P. (2007). Comparative genomics - a perspective. Bioinformation, 1(9), 376–378. https://doi.org/10.6026/97320630001376
  • Soares, S. C., Geyik, H., Ramos, R. T. J., de Sá, P. H. C. G., Barbosa, E. G. V., Baumbach, J., Figueiredo, H. C. P., Miyoshi, A., Tauch, A., Silva, A., & Azevedo, V. (2016). GIPSy: Genomic island prediction software. Journal of Biotechnology, 232, 2–11. https://doi.org/10.1016/j.jbiotec.2015.09.008
  • Soumana, I. H., Linz, B., & Harvill, E. T. (2017). Environmental origin of the genus Bordetella. Front Microbiology, 8(JAN). https://doi.org/10.3389/fmicb.2017.00028.
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 22(14), 1710–1716. Available from: 10.1093/bioinformatics/btl150. https://doi.org/10.1093/bioinformatics/btl150
  • Strohmaier, H., Remler, P., Renner, W., & Hogenauer, G. (1995). Expression of genes kdsA and kdsB involved in 3-deoxy-D-manno-octulosonic acid metabolism and biosynthesis of enterobacterial lipopolysaccharide is growth phase regulated primarily at the transcriptional level in Escherichia coli K-12. Journal of Bacteriology, 177(15), 4488–4500. https://doi.org/10.1128/jb.177.15.4488-4500.1995
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. v. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tazato, N., Handa, Y., Nishijima, M., Kigawa, R., Sano, C., & Sugiyama, J. (2015). Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 65(12), 4830–4838. https://doi.org/10.1099/ijsem.0.000655
  • Tettelin, H., Riley, D., Cattuto, C., & Medini, D. (2008). Comparative genomics: The bacterial pan-genome. Current Opinion in Microbiology, 11(5), 472–477. https://doi.org/10.1016/j.mib.2008.09.006
  • Thoden, J. B., & Holden, H. M. (2010). Molecular structure of wlbb, a bacterial N-acetyltransferase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry, 49(22), 4644–4653. https://doi.org/10.1021/bi1005738
  • Thomas, G. H., Southworth, T., León-Kempis, M. R., Leech, A., & Kelly, D. J. (2006). Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology (Reading, England), 152(Pt 1), 187–198. https://doi.org/10.1099/mic.0.28334-0
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • UniProt. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://academic.oup.com/nar/article/47/D1/D506/5160987.
  • Van Loo, I. H. M., Heuvelman, K. J., King, A. J., & Mooi, F. R. (2002). Multilocus sequence typing of Bordetella pertussis based on surface protein genes. Journal of Clinical Microbiology, 40(6), 1994–2001. https://doi.org/10.1128/JCM.40.6.1994-2001.2002
  • Vilela Rodrigues, T. C., Jaiswal, A. K., de Sarom, A., de Castro Oliveira, L., Freire Oliveira, C. J., Ghosh, P., Tiwari, S., Miranda, F. M., de Jesus Benevides, L., Ariston de Carvalho Azevedo, V., & de Castro Soares, S. (2019). Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: A causative agent of pneumonia. Royal Society Open Science, 6(7), 190907. https://doi.org/10.1098/rsos.190907
  • Viola, R. E. (2001). The central enzymes of the aspartate family of amino acid biosynthesis. Accounts of Chemical Research, 34(5), 339–349. https://doi.org/10.1021/ar000057q
  • Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52(2), 360–372. https://doi.org/10.1021/ci200454v
  • Von Wintzingerode, F., Gerlach, G., Schneider, B., & Gross, R. (2002). Phylogenetic relationships and virulence evolution in the genus Bordetella. Current Topics in Microbiology and Immunology, 264, 177–199. I:Available from: 10.1007/978-3-662-09217-0_10.
  • von Wintzingerode, F., Schattke, A., Siddiqui, R. A., Rösick, U., Göbel, U. B., & Gross, R. (2001). Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. International Journal of Systematic and Evolutionary Microbiology, 51(Pt 4), 1257–1265. https://doi.org/10.1099/00207713-51-4-1257
  • Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., & Chetvernin, V. (2008). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 36(Suppl. 1). https://doi.org/10.1093/nar/gkx1095.
  • Yeung, K. H. T., Duclos, P., Nelson, E. A. S., & Hutubessy, R. C. W. (2017). An update of the global burden of pertussis in children younger than 5 years: A modelling study. The Lancet Infectious Diseases, 17(9), 974–980. https://doi.org/10.1016/S1473-3099(17)30390-0
  • Yu, Z., Reichheld, S. E., Savchenko, A., Parkinson, J., & Davidson, A. R. (2010). A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. Journal of Molecular Biology, 400(4), 847–864. https://doi.org/10.1016/j.jmb.2010.05.062
  • Zhang, R. (2004). DEG: A database of essential genes. Nucleic Acids Research, 32(90001), 271D–2272. https://doi.org/10.1093/nar/gkh024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.