213
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Computational study of novel inhibitory molecule, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea, with high potential to competitively block ATP binding to the RNA dependent RNA polymerase of SARS-CoV-2 virus

, , ORCID Icon, , ORCID Icon, , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 10162-10180 | Received 05 Jan 2021, Accepted 03 Jun 2021, Published online: 21 Jun 2021

References

  • Alexpandi, R., De Mesquita, J. F., Pandian, S. K., & Ravi, A. V. (2020). Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Frontiers in Microbiology, 11, 1796. https://doi.org/10.3389/fmicb.2020.01796
  • Arts, E. J., & Hazuda, D. J. (2012). HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine, 2 (4), a007161. https://doi.org/10.1101/cshperspect.a007161
  • Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787
  • Cao, Y.-c., Deng, Q.-x., & Dai, S.-x. (2020). Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Medicine and Infectious Disease., 35, 101647. https://doi.org/10.1016/j.tmaid.2020.101647
  • Chang, Y., Tung, Y., Lee, K., Chen, T., Hsiao, Y., Chang, H., Hsieh, T., Su, C., Wang, S., Yu, J., Shih, S., Lin, Y., Lin, Y., Tu, Y. E., Tung, C., & Chen, C. (2020). Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking. Preprints. https://www.preprints.org/manuscript/202002.0242/v1.
  • Choy, K.-T., Wong, A. Y.-L., Kaewpreedee, P., Sia, S. F., Chen, D., Hui, K. P. Y., Chu, D. K. W., Chan, M. C. W., Cheung, P. P.-H., Huang, X., Peiris, M., & Yen, H.-L. (2020). Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, 178, 104786. https://doi.org/10.1016/j.antiviral.2020.104786
  • Dallakyan, S., & Olson, A. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, NJ), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Eastman, R. T., Roth, J. S., Brimacombe, K. R., Simeonov, A., Shen, M., Patnaik, S., & Hall, M. D. (2020). Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Central Science., 6 (5), 672–683. https://doi.org/10.1021/acscentsci.0c00489
  • El Zowalaty, M. E., & Järhult, J. D. J. O. H. (2020). From SARS to COVID-19: A previously unknown SARS-CoV-2 virus of pandemic potential infecting humans–Call for a One Health approach. One Health, 9, 100124. https://doi.org/10.1016/j.onehlt.2020.100124
  • Elfiky, A. A. (2020). Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49 (21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., & Wang, T. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368 (6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Godoy, A. S., Lima, G. M., Oliveira, K. I., Torres, N. U., Maluf, F. V., Guido, R. V., & Oliva, G. (2017). Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Nature Communications, 8, 14764.
  • Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Götte, M. (2020a). The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry, 295 (15), 4773–4779. https://doi.org/10.1074/jbc.AC120.013056
  • Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020b). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47 (7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Kaur, J., Tsvetkova, Y., Arroub, K., Sahnoun, S., Kiessling, F., & Mathur, S. (2017). Synthesis, characterization, and relaxation studies of Gd-DO3A conjugate of chlorambucil as a potential theranostic agent. Chemical Biology and Drug Design, 89(2), 269–276. https://doi.org/10.1111/cbdd.12827
  • Koulgi, S., Jani, V., Uppuladinne, M. V. N., Sonavane, U., & Joshi, R. (2020). Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Advances, 10(45), 26792–26803. https://doi.org/10.1039/D0RA04743K
  • Kumar, S., Sharma, P. P., Shankar, U., Kumar, D., Joshi, S. K., Pena, L., & Durvasula, R. (2020). Discovery of New hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure–activity relationship studies. Journal of Chemical Information and Modeling, 60(12), 5754–5770. https://doi.org/10.1021/acs.jcim.0c00326
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020a). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020b). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 16. doi: 0.1038/s41421-020-0156-0. https://doi.org/10.1038/s41421-020-0156-0
  • Mackenzie, J. S., & Smith, D. W. (2020). COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t. Microbiology Australia, 41(1), 45–50. https://doi.org/10.1071/MA20013
  • Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins, 12(4), 345–364. https://doi.org/10.1002/prot.340120407
  • Nittari, G., Pallotta, G., Amenta, F., & Tayebati, S. K. (2020). Current pharmacological treatments for SARS-COV-2: A narrative review. European Journal of Pharmacology, 882, 173328. https://doi.org/10.1016/j.ejphar.2020.173328
  • Rathi, A. K., Syed, R., Shin, H.-S., & Patel, R. V. (2016). Piperazine derivatives for therapeutic use: A patent review (2010–present). Expert Opinion on Therapeutic Patents, 26 (7), 777–797. https://doi.org/10.1080/13543776.2016.1189902
  • Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 323(18), 1824–1836. https://doi.org/10.1001/jama.2020.6019
  • Sheahan, T. P., Sims, A. C., Graham, R. L., Menachery, V. D., Gralinski, L. E., Case, J. B., Leist, S. R., Pyrc, K., Feng, J. Y., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M. O., Mackman, R. L., Spahn, J. E., Palmiotti, C. A., Siegel, D., Ray, A. S., … Baric, R. S. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9(396), eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
  • Shirota, Y., Luo, H., Qin, W., Kaneko, S., Yamashita, T., Kobayashi, K., & Murakami, S. (2002). Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. Journal of Biological Chemistry, 277(13), 11149–11155. https://doi.org/10.1074/jbc.M111392200
  • Siegel, D., Hui, H. C., Doerffler, E., Clarke, M. O., Chun, K., Zhang, L., Neville, S., Carra, E., Lew, W., Ross, B., Wang, Q., Wolfe, L., Jordan, R., Soloveva, V., Knox, J., Perry, J., Perron, M., Stray, K. M., Barauskas, O., … Mackman, R. L. (2017). Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses. Journal of Medicinal Chemistry, 60(5), 1648–1661. https://doi.org/10.1021/acs.jmedchem.6b01594
  • Subissi, L., Posthuma, C. C., Collet, A., Zevenhoven-Dobbe, J. C., Gorbalenya, A. E., Decroly, E., Snijder, E. J., Canard, B., & Imbert, I. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 111(37), E3900–E9. https://doi.org/10.1073/pnas.1323705111
  • Sumit, K., Poonam, & Brijesh, R. (2020). Coronavirus disease COVID-19: A new threat to public health. Current Topics in Medicinal Chemistry, 20(8), 599–600. https://doi.org/10.2174/1568026620999200305144319.
  • Tchesnokov, E. P., Feng, J Y., Porter, D. P., & Götte, M. (2019). Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses, 11(4), 326. https://doi.org/10.3390/v11040326
  • Udugama, B., Kadhiresan, P., Kozlowski, H. N., Malekjahani, A., Osborne, M., Li, V. Y. C., Chen, H., Mubareka, S., Gubbay, J. B., & Chan, W. C. W. (2020). Diagnosing COVID-19: The disease and tools for detection. ACS Na, 14(4), 3822–3835. https://doi.org/10.1021/acsnano.0c02624
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • World Health Organisation. (2020). Coronavirus disease (COVID-2019) Weekly epidemiological update on COVID-19 - 30 March 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-31-march-2021.
  • Yamamoto, N., Matsuyama, S., Hoshino, T., & Yamamoto, N. (2020). Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv. https://doi.org/10.1101/2020.04.06.
  • Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Zhang, L., Zhang, D., Wang, X., Yuan, C., Li, Y., Jia, X., ... & Huang, X. (2021). 1′-Ribose cyano substitution allows Remdesivir to effectively inhibit nucleotide addition and proofreading during SARS-CoV-2 viral RNA replication. Physical Chemistry Chemical Physics, 23(10), 5852–5863. https://doi.org/10.1039/D0CP05948J
  • Zhang, L., & Zhou, R. (2020). Binding mechanism of remdesivir to SARS-CoV-2 RNA dependent RNA polymerase. Preprints. https://www.preprints.org/manuscript/202003.0267/v1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.