393
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

New putative therapeutic targets against Serratia marcescens using reverse vaccinology and subtractive genomics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10106-10121 | Received 12 Nov 2020, Accepted 02 Jun 2021, Published online: 30 Jun 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adhikari, R., Singh, D., Chandravanshi, M., Dutta, A., & Kanaujia, S. P. (2017). UgpB, a periplasmic component of the UgpABCE ATP-binding cassette transporter, predominantly follows the Sec translocation pathway. Meta Gene, 13, 129–139. https://doi.org/10.1016/j.mgene.2017.06.002
  • Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420–423. https://doi.org/10.1038/s41587-019-0036-z
  • Bab-Dinitz, E., Shmuely, H., Maupin-Furlow, J., Eichler, J., & Shaanan, B. (2006). Haloferax volcanii PitA: An example of functional interaction between the Pfam chlorite dismutase and antibiotic biosynthesis monooxygenase families? Bioinformatics (Oxford, England), 22(6), 671–675. https://doi.org/10.1093/bioinformatics/btk043
  • Barh, D., Tiwari, S., Jain, N., Ali, A., Santos, A. R., Misra, A. N., Azevedo, V., & Kumar, A. (2011). In silico subtractive genomics for target identification in human bacterial pathogens. Drug Development Research, 72(2), 162–177. https://doi.org/10.1002/ddr.20413
  • Barinov, A., Loux, V., Hammani, A., Nicolas, P., Langella, P., Ehrlich, D., Maguin, E., & van de Guchte, M. (2009). Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics, 9(1), 61–73. https://doi.org/10.1002/pmic.200800195
  • Bos, M. P., Grijpstra, J., Tommassen-van Boxtel, R., & Tommassen, J. (2014). Involvement of Neisseria meningitidis lipoprotein GNA2091 in the assembly of a subset of outer membrane proteins. The Journal of Biological Chemistry, 289(22), 15602–15610. https://doi.org/10.1074/jbc.M113.539510
  • Buchy, P., Ascioglu, S., Buisson, Y., Datta, S., Nissen, M., Tambyah, P. A., & Vong, S. (2020). Impact of vaccines on antimicrobial resistance. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 90, 188–196. https://doi.org/10.1016/j.ijid.2019.10.005
  • Capriles, P. V., Guimarães, A. C., Otto, T. D., Miranda, A. B., Dardenne, L. E., & Degrave, W. M. (2010). Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: Putative drug targets for chagas' disease treatment. BMC Genomics, 11(1), 610. https://doi.org/10.1186/1471-2164-11-610
  • Consortium, U. (2010). The universal protein resource (UniProt) in 2010. Nucleic Acids Research, 38(suppl_1), D142–D148.
  • Consortium, T. U. (2018). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Cristina, M. L., Sartini, M., & Spagnolo, A. M. (2019). Serratia marcescens infections in neonatal intensive care units (NICUs). International Journal of Environmental Research and Public Health, 16(4), 610. https://doi.org/10.3390/ijerph16040610
  • Domínguez-Gil, T., Molina, R., Alcorlo, M., & Hermoso, J. A. (2016). Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 28, 91–104. https://doi.org/10.1016/j.drup.2016.07.002
  • dos Santos, R. N., Ferreira, L. G., & Andricopulo, A. D. (2018). Practices in molecular docking and structure-based virtual screening (pp. 31–50). Springer.
  • Duffield, M., Cooper, I., McAlister, E., Bayliss, M., Ford, D., & Oyston, P. (2010). Predicting conserved essential genes in bacteria: In silico identification of putative drug targets. Molecular bioSystems, 6(12), 2482–2489. https://doi.org/10.1039/c0mb00001a
  • Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16(1), 157. https://doi.org/10.1186/s13059-015-0721-2
  • Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., & Rarey, M. (2017). ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Research, 45(W1), W337–W43. https://doi.org/10.1093/nar/gkx333
  • Farahmandian, N., Seifipour, M., & Sefid, F. (2016). Structure engineering of FhuA as a vaccine candidate in Escherichia coli. The IIOABJ Journal, 7(5), 352–358.
  • Fereshteh, S., Abdoli, S., Shahcheraghi, F., Ajdary, S., Nazari, M., & Badmasti, F. (2020). New putative vaccine candidates against Acinetobacter baumannii using the reverse vaccinology method. Microbial Pathogenesis, 143, 104114. https://doi.org/10.1016/j.micpath.2020.104114
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Ferreira, R. L., Rezende, G. S., Damas, M. S. F., Oliveira-Silva, M., Pitondo-Silva, A., Brito, M. C. A., Leonardecz, E., de Góes, F. R., Campanini, E. B., Malavazi, I., da Cunha, A. F., & Pranchevicius, M.-C. d. S. (2020). Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian Tertiary Hospital. Frontiers in Microbiology, 11, 956. https://doi.org/10.3389/fmicb.2020.00956
  • FitzGerald, E. S., Luz, N. F., & Jamieson, A. M. (2020). Competitive cell death interactions in pulmonary infection: Host modulation versus pathogen manipulation. Frontiers in Immunology, 11, 814. https://doi.org/10.3389/fimmu.2020.00814
  • Furman, D., Chang, J., Lartigue, L., Bolen, C. R., Haddad, F., Gaudilliere, B., Ganio, E. A., Fragiadakis, G. K., Spitzer, M. H., Douchet, I., Daburon, S., Moreau, J.-F., Nolan, G. P., Blanco, P., Déchanet-Merville, J., Dekker, C. L., Jojic, V., Kuo, C. J., Davis, M. M., & Faustin, B. (2017). Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nature Medicine, 23(2), 174–184. https://doi.org/10.1038/nm.4267
  • Gomez, G., Pei, J., Mwangi, W., Adams, L. G., Rice-Ficht, A., & Ficht, T. A. (2013). Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach. PLoS One, 8(3), e59751. https://doi.org/10.1371/journal.pone.0059751
  • Gonzalez-Juarbe, N., Bradley, K. M., Riegler, A. N., Reyes, L. F., Brissac, T., Park, S.-S., Restrepo, M. I., & Orihuela, C. J. (2018). Bacterial pore-forming toxins promote the activation of caspases in parallel to necroptosis to enhance alarmin release and inflammation during pneumonia. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-24210-8
  • González-Juarbe, N., Gilley, R. P., Hinojosa, C. A., Bradley, K. M., Kamei, A., Gao, G., Dube, P. H., Bergman, M. A., & Orihuela, C. J. (2015). Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathogens, 11(12), e1005337. https://doi.org/10.1371/journal.ppat.1005337
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • He, Y., Xiang, Z., & Mobley, H. L. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010, 1–15. https://doi.org/10.1155/2010/297505
  • Hejazi, A., & Falkiner, F. (1997). Serratia marcescens. Journal of Medical Microbiology, 46(11), 903–912. https://doi.org/10.1099/00222615-46-11-903
  • Henrick, K., & Hirshberg, M. (2012). Structure of the signal transduction protein TRAP (target of RNAIII-activating protein). Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 68(Pt 7), 744–750. https://doi.org/10.1107/S1744309112020167
  • Herra, C., & Falkiner, F. R. (2018). Serratia marcescens. Antimicrobe Microbes.
  • Holm, L. (2020). DALI and the persistence of protein shape. Protein Science: A Publication of the Protein Society, 29(1), 128–140. https://doi.org/10.1002/pro.3749
  • Huang, J., & MacKerell, J. A. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data . Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Irwin, J., Sterling, T. T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. J. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Ishii, K., Adachi, T., Imamura, K., Takano, S., Usui, K., Suzuki, K., Hamamoto, H., Watanabe, T., & Sekimizu, K. (2012). Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism . The Journal of Biological Chemistry, 287(43), 36582–36592. https://doi.org/10.1074/jbc.M112.399667
  • Iyer, L. M., Burroughs, A. M., & Aravind, L. (2006). The ASCH superfamily: Novel domains with a fold related to the PUA domain and a potential role in RNA metabolism. Bioinformatics (Oxford, England), 22(3), 257–263. https://doi.org/10.1093/bioinformatics/bti767
  • Jaiswal, A. K., Tiwari, S., Jamal, S. B., de Castro Oliveira, L., Alves, L. G., Azevedo, V., Ghosh, P., Oliveira, C. J. F., & Soares, S. C. (2020). The pan-genome of Treponema pallidum reveals differences in genome plasticity between subspecies related to venereal and non-venereal syphilis. BMC Genomics, 21(1), 33. https://doi.org/10.1186/s12864-019-6430-6
  • Jennings, G. T., Savino, S., Marchetti, E., Aricò, B., Kast, T., Baldi, L., Ursinus, A., Höltje, J.-V., Nicholas, R. A., Rappuoli, R., & Grandi, G. (2002). GNA33 from Neisseria meningitidis serogroup B encodes a membrane-bound lytic transglycosylase (MltA). European Journal of Biochemistry, 269(15), 3722–3731. https://doi.org/10.1046/j.1432-1033.2002.03064.x
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kelly, D. F., & Rappuoli, R. (2005). Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis (pp. 217–223). Springer.
  • Kline, K. A., Fälker, S., Dahlberg, S., Normark, S., & Henriques-Normark, B. (2009). Bacterial adhesins in host-microbe interactions. Cell Host & Microbe, 5(6), 580–592. https://doi.org/10.1016/j.chom.2009.05.011
  • Koraimann, G. (2003). Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cellular and Molecular Life Sciences: CMLS, 60(11), 2371–2388. https://doi.org/10.1007/s00018-003-3056-1
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Krzymińska, S., Ochocka, K., & Kaznowski, A. (2012). Apoptosis of epithelial cells and macrophages due to nonpigmented Serratia marcescens strains. The Scientific World Journal, 2012, 1–8. https://doi.org/10.1100/2012/679639
  • Kumagai, Y., Okada, K., & Sawae, Y. (1992). The effect of humoral and cell-mediated immunity in resistance to systemic Serratia infection. Journal of Medical Microbiology, 36(4), 245–249. https://doi.org/10.1099/00222615-36-4-245
  • Kumar, K., Prakash, A., Anjum, F., Islam, A., Ahmad, F., & Hassan, M. I. (2015). Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: A quest for potential drug targets. 3 Biotech, 5(4), 561–576. https://doi.org/10.1007/s13205-014-0256-3
  • Kumar Jaiswal, A., Tiwari, S., Jamal, S. B., Barh, D., Azevedo, V., & Soares, S. C. (2017). An in silico identification of common putative vaccine candidates against Treponema pallidum: A reverse vaccinology and subtractive genomics based approach. International Journal of Molecular Sciences, 18(2), 402. https://doi.org/10.3390/ijms18020402
  • Kurz, C. L., Chauvet, S., Andrès, E., Aurouze, M., Vallet, I., Michel, G. P. F., Uh, M., Celli, J., Filloux, A., De Bentzmann, S., Steinmetz, I., Hoffmann, J. A., Finlay, B. B., Gorvel, J.-P., Ferrandon, D., & Ewbank, J. J. (2003). Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. The EMBO Journal, 22(7), 1451–1460. https://doi.org/10.1093/emboj/cdg159
  • Leclercq, R., Cantón, R., Brown, D. F. J., Giske, C. G., Heisig, P., MacGowan, A. P., Mouton, J. W., Nordmann, P., Rodloff, A. C., Rossolini, G. M., Soussy, C.-J., Steinbakk, M., Winstanley, T. G., & Kahlmeter, G. (2013). EUCAST expert rules in antimicrobial susceptibility testing. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 19(2), 141–160. https://doi.org/10.1111/j.1469-0691.2011.03703.x
  • Locher, K. P., Rees, B., Koebnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J. P., & Moras, D. (1998). Transmembrane signaling across the ligand-gated FhuA receptor: Crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell, 95(6), 771–778. https://doi.org/10.1016/S0092-8674(00)81700-6
  • Lockhart, S. R., Abramson, M. A., Beekmann, S. E., Gallagher, G., Riedel, S., Diekema, D. J., Quinn, J. P., & Doern, G. V. (2007). Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. Journal of Clinical Microbiology, 45(10), 3352–3359. https://doi.org/10.1128/JCM.01284-07
  • Mahlen, S. D. (2011). Serratia infections: From military experiments to current practice. Clinical Microbiology Reviews, 24(4), 755–791. https://doi.org/10.1128/CMR.00017-11
  • Maki, D. G., Hennekens, C. G., Phillips, C. W., Shaw, W. V., & Bennett, J. V. (1973). Nosocomial urinary tract infection with Serratia marcescens: An epidemiologic study. The Journal of Infectious Diseases, 128(5), 579–587. https://doi.org/10.1093/infdis/128.5.579
  • Mallory, M. L., Lindesmith, L. C., & Baric, R. S. (2018). Vaccination-induced herd immunity: Successes and challenges. The Journal of Allergy and Clinical Immunology, 142(1), 64–66. https://doi.org/10.1016/j.jaci.2018.05.007
  • Meltz, D. J., & Grieco, M. H. (1973). Characteristics of Serratia marcescens Pneumonia. Archives of Internal Medicine, 132(3), 359–364.
  • Mills, J., & Drew, D. (1976). Serratia marcescens endocarditis: A regional illness associated with intravenous drug abuse. Annals of Internal Medicine, 84(1), 29–35. https://doi.org/10.7326/0003-4819-84-1-29
  • Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360. https://doi.org/10.1093/nar/gky1100
  • Mondal, S. I., Ferdous, S., Jewel, N. A., Akter, A., Mahmud, Z., & Islam, M. M. (2015). Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157: H7: An in silico approach. Advances and Applications in Bioinformatics and Chemistry: AABC, 8(49), 49–63.
  • Muzzi, A., Masignani, V., & Rappuoli, R. (2007). The pan-genome: Towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discovery Today, 12(11-12), 429–439. https://doi.org/10.1016/j.drudis.2007.04.008
  • Naz, A., Awan, F. M., Obaid, A., Muhammad, S. A., Paracha, R. Z., Ahmad, J., & Ali, A. (2015). Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: A reverse vaccinology based approach. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 32, 280–291. https://doi.org/10.1016/j.meegid.2015.03.027
  • Ni, Z., Chen, Y., Ong, E., & He, Y. (2017). Antibiotic resistance determinant-focused Acinetobacter baumannii vaccine designed using reverse vaccinology. International Journal of Molecular Sciences, 18(2), 458. https://doi.org/10.3390/ijms18020458
  • Noinaj, N., Guillier, M., Barnard, T. J., & Buchanan, S. K. (2010). TonB-dependent transporters: Regulation, structure, and function. Annual Review of Microbiology, 64, 43–60. https://doi.org/10.1146/annurev.micro.112408.134247
  • Patronov, A., & Doytchinova, I. (2013). T-cell epitope vaccine design by immunoinformatics. Open Biology, 3(1), 120139. https://doi.org/10.1098/rsob.120139
  • Petersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  • Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Aricò, B., Comanducci, M., Jennings, G. T., Baldi, L., Bartolini, E., Capecchi, B., Galeotti, C. L., Luzzi, E., Manetti, R., Marchetti, E., Mora, M., Nuti, S., Ratti, G., Santini, L., Savino, S., … Rappuoli, R. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science (New York, N.Y.), 287(5459), 1816–1820. https://doi.org/10.1126/science.287.5459.1816
  • Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5), 445–450. https://doi.org/10.1016/S1369-5274(00)00119-3
  • Raymond, J., Aujard, Y., & Group, E. S. (2000). Nosocomial infections in pediatric patients: A European, multicenter prospective study. European Study Group. Infection Control and Hospital Epidemiology, 21(4), 260–263. https://doi.org/10.1086/501755
  • Reeves, S. A., Torres, A. G., & Payne, S. M. (2000). TonB is required for intracellular growth and virulence of Shigella dysenteriae. Infection and Immunity, 68(11), 6329–6336. https://doi.org/10.1128/IAI.68.11.6329-6336.2000
  • Resistance, I. (2019). No time to wait: Securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations.
  • Ross, B. L., Tenner, B., Markwardt, M. L., Zviman, A., Shi, G., Kerr, J. P., Snell, N. E., McFarland, J. J., Mauban, J. R., Ward, C. W., Rizzo, M. A., & Zhang, J. (2018). Single-color, ratiometric biosensors for detecting signaling activities in live cells. eLife, 7, 1–15. https://doi.org/10.7554/eLife.35458
  • Sader, H. S., Castanheira, M., Streit, J. M., Carvalhaes, C. G., & Mendes, R. E. (2020). Frequency and antimicrobial susceptibility of Bacteria causing bloodstream infections in pediatric patients from United States (US) medical centers (2014–2018). Diagnostic Microbiology and Infectious Disease, 98(2), 115108. https://doi.org/10.1016/j.diagmicrobio.2020.115108
  • Saralegui, C., Ponce-Alonso, M., Pérez-Viso, B., Moles Alegre, L., Escribano, E., Lázaro-Perona, F., Lanza, V. F., de Pipaón, M. S., Rodríguez, J. M., Baquero, F., & Del Campo, R. (2020). Genomics of Serratia marcescens isolates causing outbreaks in the same pediatric unit 47 years apart: Position in an updated phylogeny of the species. Frontiers in Microbiology, 11, 451. https://doi.org/10.3389/fmicb.2020.00451
  • Serruto, D., Bottomley, M. J., Ram, S., Giuliani, M. M., & Rappuoli, R. (2012). The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: Immunological, functional and structural characterization of the antigens. Vaccine, 30, B87–B97. https://doi.org/10.1016/j.vaccine.2012.01.033
  • Shanmugham, B., & Pan, A. (2013). Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: A novel hierarchical in silico approach. PLoS One, 8(3), e59126. https://doi.org/10.1371/journal.pone.0059126
  • Shende, G., Haldankar, H., Barai, R. S., Bharmal, M. H., Shetty, V., & Idicula-Thomas, S. (2016). PBIT: Pipeline builder for identification of drug targets for infectious diseases. Bioinformatics, 33(6), 929–931.
  • Singh, S. P., & Mishra, B. N. (2016). Major histocompatibility complex linked databases and prediction tools for designing vaccines. Human Immunology, 77(3), 295–306. https://doi.org/10.1016/j.humimm.2015.11.012
  • Šiširak, M., & Hukić, M. (2013). An outbreak of multidrug-resistant Serratia marcescens: The importance of continuous monitoring of nosocomial infections. Acta Medica Academica, 42(1), 25–31. https://doi.org/10.5644/ama2006-124.67
  • Solanki, V., Tiwari, M., & Tiwari, V. (2018). Host-bacteria interaction and adhesin study for development of therapeutics. International Journal of Biological Macromolecules, 112, 54–64. https://doi.org/10.1016/j.ijbiomac.2018.01.151
  • Soni, D. K., Dubey, S. K., & Bhatnagar, R. (2020). ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: Target for drug and vaccine development. Emerging Microbes & Infections, 9(1), 207–220. https://doi.org/10.1080/22221751.2020.1714488
  • Stancik, L. M., Stancik, D. M., Schmidt, B., Barnhart, D. M., Yoncheva, Y. N., & Slonczewski, J. L. (2002). pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. Journal of Bacteriology, 184(15), 4246–4258. https://doi.org/10.1128/JB.184.15.4246-4258.2002
  • Stanislauskienė, R., Laurynėnas, A., Rutkienė, R., Aučynaitė, A., Tauraitė, D., Meškienė, R., Urbelienė, N., Kaupinis, A., Valius, M., Kaliniene, L., & Meškys, R. (2020). YqfB protein from Escherichia coli: An atypical amidohydrolase active towards N 4-acylcytosine derivatives. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-57664-w
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Stork, M., Bos, M. P., Jongerius, I., de Kok, N., Schilders, I., Weynants, V. E., Poolman, J. T., & Tommassen, J. (2010). An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathogens, 6(7), e1000969. https://doi.org/10.1371/journal.ppat.1000969
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., & Magrini, N. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet. Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Tagliabue, A., & Rappuoli, R. (2018). Changing priorities in vaccinology: Antibiotic resistance moving to the top. Frontiers in Immunology, 9, 1068. https://doi.org/10.3389/fimmu.2018.01068
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Thomson, N., Crow, M., McGowan, S., Cox, A., & Salmond, G. (2000). Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Molecular Microbiology, 36(3), 539–556. https://doi.org/10.1046/j.1365-2958.2000.01872.x
  • Torres, A. G., Redford, P., Welch, R. A., & Payne, S. M. (2001). TonB-dependent systems of uropathogenic Escherichia coli: Aerobactin and heme transport and TonB are required for virulence in the mouse. Infection and Immunity, 69(10), 6179–6185. https://doi.org/10.1128/IAI.69.10.6179-6185.2001
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tsang, M.-J., Yakhnina, A. A., & Bernhardt, T. G. (2017). NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genetics, 13(7), e1006888. https://doi.org/10.1371/journal.pgen.1006888
  • van Hoek, A., Mevius, D., Guerra, B., Mullany, P., Roberts, A., & Aarts, H. (2011). Acquired antibiotic resistance genes: An overview. Frontiers in Microbiology, 2, 203. https://doi.org/10.3389/fmicb.2011.00203
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Varma, P. B. S., Adimulam, Y. B., & Kodukula, S. (2015). In silico functional annotation of a hypothetical protein from Staphylococcus aureus. Journal of Infection and Public Health, 8(6), 526–532. https://doi.org/10.1016/j.jiph.2015.03.007
  • Vilela Rodrigues, T. C., Jaiswal, A. K., de Sarom, A., de Castro Oliveira, L., Freire Oliveira, C. J., Ghosh, P., Tiwari, S., Miranda, F. M., de Jesus Benevides, L., Ariston de Carvalho Azevedo, V., & de Castro Soares, S. (2019). Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: A causative agent of pneumonia. Royal Society Open Science, 6(7), 190907. https://doi.org/10.1098/rsos.190907
  • Voelz, A., Müller, A., Gillen, J., Le, C., Dresbach, T., Engelhart, S., Exner, M., Bates, C. J., & Simon, A. (2010). Outbreaks of Serratia marcescens in neonatal and pediatric intensive care units: Clinical aspects, risk factors and management. International Journal of Hygiene and Environmental Health, 213(2), 79–87. https://doi.org/10.1016/j.ijheh.2009.09.003
  • Volkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics (Oxford, England), 28(15), 2074–2075. https://doi.org/10.1093/bioinformatics/bts310
  • Wang, Y., Chen, X., Hu, Y., Zhu, G., White, A. P., & Köster, W. (2018). Evolution and sequence diversity of FhuA in Salmonella and Escherichia. Infection and Immunity, 86(11), 1–12. https://doi.org/10.1128/IAI.00573-18
  • Westbrook, J., Feng, Z., Jain, S., Bhat, T. N., Thanki, N., Ravichandran, V., Gilliland, G. L., Bluhm, W., Weissig, H., Greer, D. S., Bourne, P. E., & Berman, H. M. (2002). The protein data bank: Unifying the archive. Nucleic Acids Research, 30(1), 245–248. https://doi.org/10.1093/nar/30.1.245
  • WHO. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO.
  • Wilkowske, C. J., Washington, J. A., Martin, W. J., & Ritts, R. (1970). Serratia marcescens. Biochemical characteristics, antibiotic susceptibility patterns, and clinical significance. JAMA, 214(12), 2157–2162. https://doi.org/10.1001/jama.214.12.2157
  • Wu, Y.-M., Hsu, P.-C., Yang, C.-C., Chang, H.-J., Ye, J.-J., Huang, C.-T., & Lee, M.-H. (2013). Serratia marcescens meningitis: Epidemiology, prognostic factors and treatment outcomes. Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 46(4), 259–265. https://doi.org/10.1016/j.jmii.2012.07.006
  • Xiang, Z., & He, Y. (2009). Vaxign: A web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1(1), 23–29. https://doi.org/10.1016/j.provac.2009.07.005
  • Zhang, R., Ou, H. Y., & Zhang, C. T. (2004). DEG: A database of essential genes. Nucleic Acids Research, 32(Database issue), D271–D272. https://doi.org/10.1093/nar/gkh024
  • Zingg, W., Soulake, I., Baud, D., Huttner, B., Pfister, R., Renzi, G., Pittet, D., Schrenzel, J., & Francois, P. (2018). Correction to: Management and investigation of a Serratia marcescens outbreak in a neonatal unit in Switzerland - The role of hand hygiene and whole genome sequencing. Antimicrobial Resistance and Infection Control, 7, 6–6. https://doi.org/10.1186/s13756-017-0295-8
  • Zvi, A., Ariel, N., Fulkerson, J., Sadoff, J. C., & Shafferman, A. (2008). Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Medical Genomics, 1, 18. https://doi.org/10.1186/1755-8794-1-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.