595
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Carbazole-based semicarbazones and hydrazones as multifunctional anti-Alzheimer agents

, , , , , , , , , & show all
Pages 10278-10299 | Received 22 Dec 2020, Accepted 07 Jun 2021, Published online: 02 Jul 2021

References

  • Aljahdali, M. S., Elmalik, Y. H., & El-Reash, G. M. A. (2014). Synthesis of some transition metal complexes of novel 1-methylpyrazole-3-aldehyde-4-(2-pyridyl)thiosemicarbazone: Spectroscopic and in vitro biological activity studies. European Journal of Chemistry, 5(2), 201–208. https://doi.org/10.5155/eurjchem.5.2.201-208.952
  • Bajda, M., Guzior, N., Ignasik, M., & Malawska, B. (2011). Multi-target-directed ligands in Alzheimer's disease treatment. Current Medicinal Chemistry, 18(32), 4949–4975. https://doi.org/10.2174/092986711797535245
  • Bertini, S., Ghilardi, E., Asso, V., Minutolo, F., Rapposelli, S., Digiacomo, M., Saccomanni, G., Salmaso, V., Sturlese, M., Moro, S., Macchia, M., & Manera, C. (2017). Sulfonamido-derivatives of unsubstituted carbazoles as BACE1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(21), 4812–4816. https://doi.org/10.1016/j.bmcl.2017.09.058
  • Beukers, M. W., Wanner, M. J., Von Frijtag Drabbe Künzel, J. K., Klaasse, E. C., IJzerman, A. P., & Koomen, G. J. (2003). N6-cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a very selective agonist with high affinity for the human adenosine A1 receptor. Journal of Medicinal Chemistry, 46(8), 1492–1503. https://doi.org/10.1021/jm021074j
  • Choubdar, N., Golshani, M., Jalili-Baleh, L., Nadri, H., Küçükkilinç, T. T., Ayazgök, B., Moradi, A., Moghadam, F. H., Abdolahi, Z., Ameri, A., Salehian, F., Foroumadi, A., & Khoobi, M. (2019). New classes of carbazoles as potential multi-functional anti-Alzheimer’s agents. Bioorganic Chemistry, 91, 103164. https://doi.org/10.1016/j.bioorg.2019.103164
  • El-Masry, A. H. (2000). Synthesis of some new pyrimidine incorporated heterocycles for biological evaluation. Indian Journal of Heterocyclic Chemistry, 10(2), 141–148.
  • Elif Öztürkkan Özbek, F., Uğurlu, G., Kalay, E., & Necefoğlu, H. (2020). Synthesis, characterization and computational studies of 4-[(pyridine-3-carbonyl)-hydrazonomethyl]-benzoic acid. Journal of Molecular Structure, 1215, 128247. https://doi.org/10.1016/j.molstruc.2020.128247
  • Fang, L., Chen, M., Liu, Z., Fang, X., Gou, S., & Chen, L. (2016). Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorganic & Medicinal Chemistry, 24(4), 886–893. https://doi.org/10.1016/j.bmc.2016.01.010
  • Goedert, M., & Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science (New York, N.Y.), 314(5800), 777–781. https://doi.org/10.1126/science.1132814
  • Gomes, L. M. F., Vieira, R. P., Jones, M. R., Wang, M. C. P., Dyrager, C., Souza-Fagundes, E. M., Da Silva, J. G., Storr, T., & Beraldo, H. (2014). 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. Journal of Inorganic Biochemistry, 139, 106–116. https://doi.org/10.1016/j.jinorgbio.2014.04.011
  • Greenough, M. A., Camakaris, J., & Bush, A. I. (2013). Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochemistry International, 62(5), 540–555. https://doi.org/10.1016/j.neuint.2012.08.014
  • Greig, N. H., Lahiri, D. K., & Sambamurti, K. (2002). Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. International Psychogeriatrics, 14(Suppl 1), 77–91. https://doi.org/10.1017/S1041610203008676
  • Hanif, M., Khan, I., Rama, N. H., Noreen, S., Choudhary, M. I., Jones, P. G., & Iqbal, M. (2012). Synthesis, crystal structure and b-glucuronidase inhibition activity of some new hydrazinecarboxamides and their 1,2,4-triazole derivatives. Medicinal Chemistry Research, 21(11), 3885–3896. https://doi.org/10.1007/s00044-011-9929-1
  • Hartmann, J., Kiewert, C., Duysen, E. G., Lockridge, O., Greig, N. H., & Klein, J. (2007). Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry, 100(5), 1421–1429. https://doi.org/10.1111/j.1471-4159.2006.04347.x
  • He, Z., Qiao, H., Yang, F., Zhou, W., Gong, Y., Zhang, X., Wang, H., Zhao, B., Ma, L., Liu, H. m., & Zhao, W. (2019). Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. European Journal of Medicinal Chemistry, 184, 112–349. https://doi.org/10.1016/j.ejmech.2019. https://doi.org/10.1016/j.ejmech.2019.111764
  • Holzgrabe, U., Kapková, P., Alptüzün, V., Scheiber, J., & Kugelmann, E. (2007). Targeting acetylcholinesterase to treat neurodegeneration. Expert Opinion on Therapeutic Targets, 11(2), 161–179. https://doi.org/10.1517/14728222.11.2.161
  • Jing, L., Wu, G., Kang, D., Zhou, Z., Song, Y., Liu, X., & Zhan, P. (2019). Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discovery Today, 24(2), 629–635. https://doi.org/10.1016/j.drudis.2018.11.012
  • Kanhed, A. M., Patel, D. V., Patel, N. R., Sinha, A., Thakor, P. S., Patel, K. B., Prajapati, N. K., Patel, K. V., & Yadav, M. R. (2020). Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1840441.
  • Kanhed, A. M., Patel, D. V., Teli, D. M., Patel, N. R., Chhabria, M. T., & Yadav, M. R. (2020). Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach. Molecular Diversity, 25(1), 383–401. https://doi.org/10.1007/s11030-020-10130-1
  • Kanhed, A. M., Sinha, A., Machhi, J., Tripathi, A., Parikh, Z. S., Pillai, P. P., Giridhar, R., & Yadav, M. R. (2015). Discovery of isoalloxazine derivatives as a new class of potential anti-Alzheimer agents and their synthesis. Bioorganic Chemistry, 61, 7–12. https://doi.org/10.1016/j.bioorg.2015.05.005
  • Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
  • Li, P., Shi, L., Gao, M. N., Yang, X., Xue, W., Jin, L. H., Hu, D. Y., & Song, B. A. (2015). Antibacterial activities against rice bacterial leaf blight and tomato bacterial wilt of 2-mercapto-5-substituted-1,3,4-oxadiazole/thiadiazole derivatives. Bioorganic & Medicinal Chemistry Letters, 25(3), 481–484. https://doi.org/10.1016/j.bmcl.2014.12.038
  • Maccioni, R. B., Farías, G., Morales, I., & Navarrete, L. (2010). The revitalized tau hypothesis on Alzheimer's disease. Archives of Medical Research, 41(3), 226–231. https://doi.org/10.1016/j.arcmed.2010.03.007
  • Makhaeva, G. F., Shevtsova, E. F., Kovaleva, N. V., Rudakova, E. V., Neganova, M. E., Dubova, L. G., Shevtsov, P. N., Aksinenko, A. Y., Sokolov, V. B., & Bachurin, S. O. (2018). Aminoadamantane conjugates with carbazole derivatives as potential multitarget agents for the treatment of Alzheimer’s disease. Effect of the spacer structure. Russian Chemical Bulletin, 67(11), 2121–2126. https://doi.org/10.1007/s11172-018-2338-6
  • Mathew, B., Baek, S. C., Parambi, D. G. T., Pil Lee, J., Joy, M., Annie Rilda, P. R., Randev, R. V., Nithyamol, P., Vijayan, V., Inasu, S. T., Mathew, G. E., Lohidakshan, K. K., Kumar Krishnan, G., & Kim, H. (2018). Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. MedChemComm, 9(11), 1871–1881. https://doi.org/10.1039/c8md00399h
  • Murty, M. S. R., Penthala, R., Polepalli, S., & Jain, N. (2016). Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents. Medicinal Chemistry Research, 25(4), 627–643. https://doi.org/10.1007/s00044-016-1514-1
  • Naik, N., Vijay Kumar, H., & Swetha, H. (2010). Synthesis and evaluation of novel carbazole derivatives as free radical scavengers. Bulgarian Chemical Communications, 42(1), 40–45.
  • Önkol, T., Gökçe, M., Orhan, İ., & Kaynak, F. (2013). Design, synthesis and evaluation of some novel 3(2H)-pyridazinone-2-yl acetohydrazides as acetylcholinesterase and butyrylcholnesterase inhibitors. Organic Communications, 1, 55–67.
  • Oset-Gasque, M. J., & Marco-Contelles, J. (2018). Alzheimer's Disease, the "One-Molecule, One-Target" Paradigm, and the Multitarget Directed Ligand Approach. ACS Chemical Neuroscience, 9(3), 401–403. https://doi.org/10.1021/acschemneuro.8b00069
  • Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2(4), 541–553. https://doi.org/10.1602/neurorx.2.4.541
  • Patel, D. V., Patel, N. R., Kanhed, A. M., Patel, S. P., Sinha, A., Kansara, D. D., Mecwan, A. R., Patel, S. B., Upadhyay, P. N., Patel, K. B., Shah, D. B., Prajapati, N. K., Murumkar, P. R., Patel, K. V., & Yadav, M. R. (2019). Novel multitarget directed triazinoindole derivatives as anti-Alzheimer agents. ACS Chemical Neuroscience, 10(8), 3635–3661. https://doi.org/10.1021/acschemneuro.9b00226
  • Patel, D. V., Patel, N. R., Kanhed, A. M., Teli, D. M., Patel, K. B., Gandhi, P. M., Patel, S. P., Chaudhary, B. N., Shah, D. B., Prajapati, N. K., Patel, K. V., & Yadav, M. R. (2020). Further studies on triazinoindoles as potential novel multitarget-directed anti-Alzheimer's agents. ACS Chemical Neuroscience, 11(21), 3557–3574. https://doi.org/10.1021/acschemneuro.0c00448
  • Patel, D. V., Patel, N. R., Kanhed, A. M., Teli, D. M., Patel, K. B., Joshi, P. D., Patel, S. P., Gandhi, P. M., Chaudhary, B. N., Prajapati, N. K., Patel, K. V., & Yadav, M. R. (2020). Novel carbazole-stilbene hybrids as multifunctional anti-Alzheimer agents. Bioorganic Chemistry, 101, 103977. https://doi.org/10.1016/j.bioorg.2020.103977
  • Pervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N., & Naseer, M. M. (2018). Synthesis, crystal structure, molecular docking studies and bio-evaluation of some N4-benzyl-substituted isatin-3-thiosemicarbazones as urease and glycation inhibitors. Heterocyclic Communications, 24(1), 51–58. https://doi.org/10.1515/hc-2017-0148
  • Pervez, H., Khan, N., Zaib, S., Yaqub, M., Naseer, M. M., Tahir, M. N., & Iqbal, J. (2017). Synthesis, X-ray molecular structure, biological evaluation and molecular docking studies of some N4-benzyl substituted 5-nitroisatin-3-thiosemicarbazones. Bioorganic & Medicinal Chemistry, 25(3), 1022–1029. https://doi.org/10.1016/j.bmc.2016.12.012
  • Poljuha, D., Šola, I., Bilić, J., Dudaš, S., Bilušić, T., Markić, J., & Rusak, G. (2015). Phenolic composition, antioxidant capacity, energy content and gastrointestinal stability of Croatian wild edible plants. European Food Research and Technology, 241(4), 573–585. https://doi.org/10.1007/s00217-015-2486-y
  • Prathima, B., Subba Rao, Y., Chalapathi, P. V., Reddy, Y. P., & Varada Reddy, A. (2012). Spectral, structural and biological analysis of Cr(III) complex with benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone. International Journal of Pharmacy and Pharmaceutical Sciences, 4(Suppl 3), 167–174.
  • Rydberg, P., Gloriam, D. E., & Olsen, L. (2010). The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics (Oxford, England), 26(23), 2988–2989. https://doi.org/10.1093/bioinformatics/btq584
  • Rydberg, P., Gloriam, D. E., Zaretzki, J., Breneman, C., & Olsen, L. (2010). SMARTCyp: A 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Medicinal Chemistry Letters, 1(3), 96–100. https://doi.org/10.1021/ml100016x
  • Saha, A., Kumar, R., Kumar, R., & Devakumar, C. (2010). Development and assessment of green synthesis of hydrazides. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 49(4), 526–531.
  • Savelieff, M. G., Lee, S., Liu, Y., & Lim, M. H. (2013). Untangling amyloid-β, tau, and metals in Alzheimer's disease. ACS Chemical Biology, 8(5), 856–865. https://doi.org/10.1021/cb400080f
  • Selkoe, D. J. (2003). Folding proteins in fatal ways. Nature, 426(6968), 900–904. https://doi.org/10.1038/nature02264
  • Sens, L., De Oliveira, A. S., Mascarello, A., Brighente, I. M. C., Yunes, R. A., & Nunes, R. J. ( (2018). Synthesis, antioxidant activity, acetylcholinesterase inhibition and quantum studies of thiosemicarbazones. Journal of the Brazilian Chemical Society, 29(2), 343–352. https://doi.org/10.21577/0103-5053.20170146
  • Sinha, A., Tamboli, R. S., Seth, B., Kanhed, A. M., Tiwari, S. K., Agarwal, S., Nair, S., Giridhar, R., Chaturvedi, R. K., & Yadav, M. R. (2015). Neuroprotective role of novel triazine derivatives by activating wnt/β catenin signaling pathway in rodent models of Alzheimer's disease. Molecular Neurobiology, 52(1), 638–652. https://doi.org/10.1007/s12035-014-8899-y
  • Sriram, D., Yogeeswari, P., Dhakla, P., Senthilkumar, P., Banerjee, D., & Manjashetty, T. H. (2009). 5-Nitrofuran-2-yl derivatives: Synthesis and inhibitory activities against growing and dormant mycobacterium species. Bioorganic & Medicinal Chemistry Letters, 19(4), 1152–1154. https://doi.org/10.1016/j.bmcl.2008.12.088
  • Sun, L., Zhang, S. Q., & Zhong, D. F. (2004). In vitro identification of metabolites of verapamil in rat liver microsomes. Acta Pharmacologica Sinica, 25(1), 121–128.
  • Talesa, V. N. (2001). Acetylcholinesterase in Alzheimer’s disease. Mechanisms of Ageing and Development, 122(16), 1961–1969. https://doi.org/10.1016/S0047-6374(01)00309-8
  • Thiratmatrakul, S., Yenjai, C., Waiwut, P., Vajragupta, O., Reubroycharoen, P., Tohda, M., & Boonyarat, C. (2014). Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 75, 21–30. https://doi.org/10.1016/j.ejmech.2014.01.020
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, T., Liu, X. h., Guan, J., Ge, S., Wu, M. B., Lin, J. P., & Yang, L. R. (2019). Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. European Journal of Medicinal Chemistry, 169, 200–223. https://doi.org/10.1016/j.ejmech.2019.02.076
  • Wang, Z., Wang, Y., Wang, B., Li, W., Huang, L., & Li, X. (2015). Design, synthesis, and evaluation of orally available clioquinol-moracin M hybrids as multitarget-directed ligands for cognitive improvement in a rat model of neurodegeneration in Alzheimer's Disease. Journal of Medicinal Chemistry, 58(21), 8616–8637. https://doi.org/10.1021/acs.jmedchem.5b01222
  • World Alzheimer Report. (2019). World Alzheimer Report 2019, Attitudes to dementia. World Alzheimer Report. https://www.alz.co.uk/research/world-report-2019
  • Yang, W., Wong, Y., Ng, O. T. W., Bai, L. P., Kwong, D. W. J., Ke, Y., Jiang, Z. H., Li, H. W., Yung, K. K. L., & Wong, M. S. (2012). Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angewandte Chemie (International Ed. in English), 51(8), 1804–1810. https://doi.org/10.1002/anie.201104150
  • Zhang, X. H., Bo-Wang, Tao, Y. Y., Ma, Q., Wang, H. J., He, Z. X., Wu, H. P., Li, Y. H., Zhao, B., Ma, L. Y., & Liu, H. M. (2020). Thiosemicarbazone-based lead optimization to discover high-efficiency and low-toxicity anti-gastric cancer agents. European Journal of Medicinal Chemistry, 199, 112349. https://doi.org/10.1016/j.ejmech.2020. https://doi.org/10.1016/j.ejmech.2020.112349
  • Zimin, D. P., Dar'in, D. V., Rassadin, V. A., & Kukushkin, V. Y. (2018). gold-catalyzed hydrohydrazidation of terminal alkynes. Organic Letters, 20(16), 4880–4884. https://doi.org/10.1021/acs.orglett.8b02019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.