376
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, antioxidant, in silico and computational investigation of 2,5-dihydroxyacetophenone derived chloro-substituted hydroxychalcones, hydroxyflavanones and hydroxyflavindogenides

, , ORCID Icon, , & ORCID Icon
Pages 10265-10277 | Received 14 Mar 2021, Accepted 03 Jun 2021, Published online: 28 Jun 2021

References

  • Abotaleb, M., Samuel, S. M., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., & Büsselberg, D. (2018). Flavonoids in cancer and apoptosis. Cancers, 11(1), 28. https://doi.org/10.3390/cancers11010028
  • Al-Sehemi, A. G., Irfan, A., Alfaifi, M., Fouda, A. M., El-Gogary, T. M. M., & Ibrahim, D. A. (2017). Computational study and in vitro evaluation of the anti-proliferative activity of novel naproxen derivatives. Journal of King Saud University - Science, 29(3), 311–319. https://doi.org/10.1016/j.jksus.2017.01.003
  • Al-Sehemi, A. G., Irfan, A., Aljubiri, S. M., & Shaker, K. H. (2016). Density functional theory investigations of radical scavenging activity of 3′-methyl-quercetin. Journal of Saudi Chemical Society, 20, S21–S28. https://doi.org/10.1016/j.jscs.2012.08.004
  • Al-Sehemi, A. G., Irfan, A., Alrumman, S. A., & Hesham, A. (2016). Antibacterial activities, DFT and QSAR studies of quinazolinone compounds. Bulletin of the Chemical Society of Ethiopia, 30(2), 307–316. https://doi.org/10.4314/bcse.v30i2.15
  • Amic, D., Davidovic-Amic, D., Beslo, D., Rastija, V., Lucic, B., & Trinajstic, N. (2007). SAR and QSAR of the antioxidant activity of flavonoids. Current Medicinal Chemistry, 14(7), 827–845. https://doi.org/10.2174/092986707780090954
  • Amin, G., & Shah, N. (2003). 5‐Dihydroxyacetophenone: Acetophenone, 2, 5‐dihydroxy‐quinacetophenone. Organic Syntheses, 2, 42–42. https://doi.org/10.1002/0471264180.os028.17
  • Ashraf, J., Mughal, E. U., Alsantali, R. I., Obaid, R. J., Sadiq, A., Naeem, N., Ali, A., Massadaq, A., Javed, Q., Javid, A., Sumrra, S. H., Zafar, M. N., & Ahmed, S. A. (2021). Structure-based designing and synthesis of 2-phenylchromone derivatives as potent tyrosinase inhibitors: In vitro and in silico studies. Bioorganic & Medicinal Chemistry, 35, 116057. https://doi.org/10.1016/j.bmc.2021.116057
  • Ashraf, J., Mughal, E. U., Sadiq, A., Bibi, M., Naeem, N., Ali, A., Massadaq, A., Fatima, N., Javid, A., & Zafar, M. N. (2020). Exploring 3-hydroxyflavone scaffolds as mushroom tyrosinase inhibitors: Synthesis, X-ray crystallography, antimicrobial, fluorescence behaviour, structure-activity relationship and molecular modelling studies. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1805364
  • Ashraf, J., Mughal, E. U., Sadiq, A., Naeem, N., Muhammad, S. A., Qousain, T., Zafar, M. N., Khan, B. A., & Anees, M. (2020). Design and synthesis of new flavonols as dual ɑ-amylase and ɑ-glucosidase inhibitors: Structure-activity relationship, drug-likeness, in vitro and in silico studies. Journal of Molecular Structure, 1218, 128458. https://doi.org/10.1016/j.molstruc.2020.128458
  • Athar, M., Lone, M. Y., Khedkar, V. M., & Jha, P. C. (2016). Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. Journal of Biomolecular Structure and Dynamics, 34(6), 1282–1297. https://doi.org/10.1080/07391102.2015.1077343
  • Atwood, J. J., & Buck, W. R. (2020). Recent literature on bryophytes. The Bryologist, 123(3), 547–583. https://doi.org/10.1639/0007-2745-123.3.547
  • Belcastro, M., Marino, T., Russo, N., & Toscano, M. (2006). Structural and electronic characterization of antioxidants from marine organisms. Theoretical Chemistry Accounts, 115(5), 361–369. https://doi.org/10.1007/s00214-006-0077-5
  • Bresciani, A., Missineo, A., Gallo, M., Cerretani, M., Fezzardi, P., Tomei, L., Cicero, D. O., Altamura, S., Santoprete, A., Ingenito, R., Bianchi, E., Pacifici, R., Dominguez, C., Munoz-Sanjuan, I., Harper, S., Toledo-Sherman, L., & Park, L. C. (2017). Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Archives of Biochemistry and Biophysics, 631, 31–41. https://doi.org/10.1016/j.abb.2017.08.003
  • Chaudhry, A. R., Ahmed, R., Irfan, A., Muhammad, S., Shaari, A., & Al-Sehemi, A. G. (2014a). Effect of heteroatoms substitution on electronic, photophysical and charge transfer properties of naphtha [2, 1-b: 6, 5-b′] difuran analogues by density functional theory. Computational and Theoretical Chemistry, 1045, 123–134. https://doi.org/10.1016/j.comptc.2014.06.028
  • Chaudhry, A. R., Ahmed, R., Irfan, A., Shaari, A., Maarof, H., & Al-Sehemi, A. G. (2014b). First principles investigations of electronic, photoluminescence and charge transfer properties of the naphtho [2, 1-b: 6, 5-b'] difuran and its derivatives for OFET. Sains Malaysiana, 43(6), 867–875. https://doi.org/10.1016/j.comptc.2014.06.028
  • Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272. https://doi.org/10.1007/s11101-018-9591-z
  • Halliwell, B., Aeschbach, R., Löliger, J., & Aruoma, O. (1995). The characterization of antioxidants. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 33(7), 601–617. https://doi.org/10.1016/0278-6915(95)00024-V
  • Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584. https:// https://doi.org/10.1016/S0955-2863(02)00208-5
  • Irfan, A., & Al-Sehemi, A. G. (2014). DFT study of the electronic and charge transfer properties of perfluoroarene–thiophene oligomers. Journal of Saudi Chemical Society, 18(5), 574–580. https://doi.org/10.1016/j.jscs.2011.11.006
  • Irfan, A., Al-Sehemi, A. G., Chaudhry, A. R., Muhammad, S., & Asiri, A. M. (2016). The structural, electro-optical, charge transport and nonlinear optical properties of 2-[(3, 5-dimethyl-1-phenyl-1H-pyrazol-4-yl) methylidene] indan-1, 3-dione. Optik, 127(21), 10148–10157. https://doi.org/10.1016/j.ijleo.2016.08.007
  • Irfan, A., Kalam, A., Chaudhry, A. R., Al-Sehemi, A. G., & Muhammad, S. (2017). Electro-optical, nonlinear and charge transfer properties of naphthalene based compounds: A dual approach study. Optik, 132, 101–110. https://doi.org/10.1016/j.ijleo.2016.12.023
  • Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., & De Fabritiis, G. (2017). DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics (Oxford, England), 33(19), 3036–3042. https://doi.org/10.1093/bioinformatics/btx350
  • Karak, P. (2019). Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences and Research, 10(4), 1567–1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74
  • Kelder, J., Grootenhuis, P. D., Bayada, D. M., Delbressine, L. P., & Ploemen, J.-P. (1999). Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharmaceutical Research, 16(10), 1514–1519. https://doi.org/10.1023/A:1015040217741
  • Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., Jin, Y., Xu, X., & Liang, G. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59, 152774 https://doi.org/10.1016/j.phymed.2018.11.034
  • Li, W., Khor, T. O., Xu, C., Shen, G., Jeong, W.-S., Yu, S., & Kong, A.-N. (2008). Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochemical Pharmacology, 76(11), 1485–1489. https://doi.org/10.1016/j.bcp.2008.07.017
  • Li, X., Zhang, D., Hannink, M., & Beamer, L. J. (2004). Crystal structure of the Kelch domain of human Keap1. The Journal of Biological Chemistry, 279(52), 54750–54758. https://doi.org/10.1074/jbc.M410073200
  • Li, Y.-R., Li, G.-H., Zhou, M.-X., Xiang, L., Ren, D.-M., Lou, H.-X., Wang, X.-N., & Shen, T. (2018). Discovery of natural flavonoids as activators of Nrf2-mediated defense system: Structure-activity relationship and inhibition of intracellular oxidative insults. Bioorganic & Medicinal Chemistry, 26(18), 5140–5150. https://doi.org/10.1016/j.bmc.2018.09.010
  • Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal, 25(15), 3605–3617. https://doi.org/10.1038/sj.emboj.7601243
  • Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124. https://doi.org/10.1016/j.foodchem.2019.125124
  • Mao, X., Gu, C., Chen, D., Yu, B., & He, J. (2017). Oxidative stress-induced diseases and tea polyphenols. Oncotarget, 8(46), 81649–81661. https://doi.org/10.18632/oncotarget.20887
  • Mughal, E. U., Sadiq, A., Ayub, M., Naeem, N., Javid, A., Sumrra, S. H., Zafar, M. N., Khan, B. A., Malik, F. P., & Ahmed, I. (2020). Exploring 3-Benzyloxyflavones as new lead cholinesterase inhibitors: Synthesis, structure–activity relationship and molecular modelling simulations. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1803136
  • Pietta, P.-G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042. https://doi.org/10.1021/np9904509
  • Sarian, M. N., Ahmed, Q. U., Mat So'ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Syed Mohamad, S. N. A., Khatib, A., & Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 2017, 8386065. https://doi.org/10.1155/2017/8386065
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Singh, D., Verma, S., & Prabha, R. (2018). Investigations on antioxidant potential of phenolic acids and flavonoids: The common phytochemical ingredients in plants. Journal of Plant Biochemistry and Physiology, 6, 1000219. https://doi.org/10.4172/2329-9029.1000219
  • Su, X., Huang, Q., Chen, J., Wang, M., Pan, H., Wang, R., Zhou, H., Zhou, Z., Liu, J., Yang, F., Li, T., & Liu, L. (2016). Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharmacological Research, 113(Pt A), 695–704. https://doi.org/10.3390/molecules24173116
  • Sun, Y., Yang, T., K Leak, R., Chen, J., & Zhang, F. (2017). Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS & Neurological Disorders Drug Targets, 16(3), 326–338. https://doi.org/10.2174/1871527316666170102120211
  • Tajammal, A., Batool, M., Ramzan, A., Samra, M. M., Mahnoor, I., Verpoort, F., Irfan, A., Al-Sehemi, A. G., Munawar, M. A., & Basra, M. A. R. (2017). Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2, 5 dihydroxyacetophenone. Journal of Molecular Structure, 1148, 512–520. https://doi.org/10.1016/j.molstruc.2017.07.042
  • Tran, P.-L., Tran, P. T., Tran, H. N. K., Lee, S., Kim, O., Min, B.-S., & Lee, J.-H. (2018). A prenylated flavonoid, 10-oxomornigrol F, exhibits anti-inflammatory effects by activating the Nrf2/heme oxygenase-1 pathway in macrophage cells. International Immunopharmacology, 55, 165–173. https://doi.org/10.1016/j.intimp.2017.12.015
  • van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R., & Raevsky, O. A. (1998). Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. Journal of Drug Targeting, 6(2), 151–165. https://doi.org/10.3109/10611869808997889
  • Wang, G., Xie, X., Yuan, l., Qiu, J., Duan, W., Xu, B., & Chen, X. (2020). Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signaling pathway . BioFactors (Oxford, England), 46(3), 441–453. https://doi.org/10.1002/biof.1599
  • Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173–1183. https://doi.org/10.1021/ja002455u
  • Wu, W.-J., Jia, W.-W., Liu, X.-H., Pan, L.-L., Zhang, Q.-Y., Yang, D., Shen, X.-Y., Liu, L., & Zhu, Y. Z. (2016). S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biology, 10, 157–167. https://doi.org/10.1016/j.redox.2016.08.011
  • Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060–1066. https://doi.org/10.1016/j.lwt.2007.06.010
  • Young, I., & Woodside, J. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54(3), 176–186. https://doi.org/10.1136/jcp.54.3.176
  • Zhai, K.-F., Duan, H., Khan, G. J., Xu, H., Han, F.-K., Cao, W.-G., Gao, G.-Z., Shan, L.-L., & Wei, Z.-J. (2018). Salicin from Alangium chinense ameliorates rheumatoid arthritis by modulating the Nrf2-HO-1-ROS pathways. Journal of Agricultural and Food Chemistry, 66(24), 6073–6082. https://doi.org/10.1021/acs.jafc.8b02241
  • Zhang, L., Zhang, W., Zheng, B., & Tian, N. (2019). Sinomenine attenuates traumatic spinal cord injury by suppressing oxidative stress and inflammation via Nrf2 pathway. Neurochemical Research, 44(4), 763–775. https://doi.org/10.1007/s11064-018-02706-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.