271
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Structure-activity relationship of antioxidant prenylated (iso)flavonoid-type compounds: quantum chemistry and molecular docking studies

ORCID Icon
Pages 10373-10382 | Received 01 May 2021, Accepted 10 Jun 2021, Published online: 28 Jun 2021

References

  • Ali, H. M., & Ali, I. H. (2019). Structure-antioxidant activity relationships, QSAR, DFT calculation, and mechanisms of flavones and flavonols. Medicinal Chemistry Research, 28(12), 2262–2269. https://doi.org/10.1007/s00044-019-02452-z
  • Amine Khodja, I., Bensouici, C., & Boulebd, H. (2020a). Combined experimental and theoretical studies of the structure-antiradical activity relationship of heterocyclic hydrazone compounds. Journal of Molecular Structure, 1221, 128858. https://doi.org/10.1016/j.molstruc.2020.128858
  • Amine Khodja, I., Boulebd, H., Bensouici, C., & Belfaitah, A. (2020b). Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz)imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 1218, 128527. https://doi.org/10.1016/j.molstruc.2020.128527
  • Barron, D., & Ibrahim, R. K. (1996). Isoprenylated flavonoids—A survey. Phytochemistry, 43(5), 921–982. https://doi.org/10.1016/S0031-9422(96)00344-5
  • Bartmańska, A., Tronina, T., Popłoński, J., Milczarek, M., Filip-Psurska, B., & Wietrzyk, J. (2018). Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules, 23(11), 2922. https://doi.org/10.3390/molecules23112922
  • Bartmess, J. E. (1994). Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98(25), 6420–6424. https://doi.org/10.1021/j100076a029
  • Bizarro Magda, M., Cabral, B. J. C., dos Santos, R. M. B., & Simões, J. A. M. (1999). Substituent effects on the O–H bond dissociation enthalpies in phenolic compounds: Agreements and controversies + erratum. Pure and Applied Chemistry, 71(7), 1249–1256. https://doi.org/10.1351/pac199971071249
  • Boozari, M., Soltani, S., & Iranshahi, M. (2019). Biologically active prenylated flavonoids from the genus Sophora and their structure–activity relationship-A review. Phytotherapy Research, 33(3), 546–560. https://doi.org/10.1002/ptr.6265
  • Botta, B., Vitali, A., Menendez, P., Misiti, D., & Monache, G. D. (2005). Prenylated flavonoids: Pharmacology and biotechnology. Current Medicinal Chemistry, 12(6), 713–739. https://doi.org/10.2174/0929867053202241
  • Boulebd, H. (2020a). Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. Journal of Molecular Structure, 1201, 127210. https://doi.org/10.1016/j.molstruc.2019.127210
  • Boulebd, H. (2020b). Theoretical insights into the antioxidant activity of moracin T. Free Radical Research, 54(4), 221–230. https://doi.org/10.1080/10715762.2020.1747616
  • Boulebd, H. (2021a). Are thymol, rosefuran, terpinolene and umbelliferone good scavengers of peroxyl radicals? Phytochemistry, 184, 112670. https://doi.org/10.1016/j.phytochem.2021.112670
  • Boulebd, H. (2021b). The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: A thermodynamic and kinetic study. Journal of Biomolecular Structure and Dynamics, 39(6), 1955–1964. https://doi.org/10.1080/07391102.2020.1740791
  • Boulebd, H., Amine Khodja, I., Bay, M. V., Hoa, N. T., Mechler, A., & Vo, Q. V. (2020). Thermodynamic and kinetic studies of the radical scavenging behavior of hydralazine and dihydralazine: Theoretical insights. The Journal of Physical Chemistry B, 124(20), 4123–4131. https://doi.org/10.1021/acs.jpcb.0c02439
  • Boulebd, H., Tam, N. M., Mechler, A., & Vo, Q. V. (2020). Substitution effects on the antiradical activity of hydralazine: A DFT analysis. New Journal of Chemistry, 44(38), 16577–16583. https://doi.org/10.1039/D0NJ03753B
  • Cao, H., Pauff, J. M., & Hille, R. (2010). Substrate orientation and catalytic specificity in the action of xanthine oxidase: The sequential hydroxylation of hypoxanthine to uric acid. The Journal of Biological Chemistry, 285(36), 28044–28053. https://doi.org/10.1074/jbc.M110.128561
  • Cazarolli, L. H., Zanatta, L., Alberton, E. H., Figueiredo, M. S. R. B., Folador, P., Damazio, R. G., Pizzolatti, M. G., & Silva, F. R. M. B. (2008). Flavonoids: Prospective drug candidates. Mini Reviews in Medicinal Chemistry, 8(13), 1429–1440. https://doi.org/10.2174/138955708786369564
  • Chang, W.-S., Lee, Y. J., Lu, F. J., & Chiang, H.-C. (1993). Inhibitory effects of flavonoids on xanthine oxidase. Anticancer Research, 13(6A), 2165–2170.
  • Chen, X., Mukwaya, E., Wong, M.-S., & Zhang, Y. (2014). A systematic review on biological activities of prenylated flavonoids. Pharmaceutical Biology, 52(5), 655–660. https://doi.org/10.3109/13880209.2013.853809
  • Cook, N. C., & Samman, S. (1996). Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. Journal of the European Ceramic Society, 7(2), 66–76. https://doi.org/10.1016/S0955-2863(95)00168-9
  • Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J., & Vanden Berghe, D. (1998). Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers . Journal of Natural Products, 61(1), 71–76. https://doi.org/10.1021/np970237h
  • Fischmann, T. O., Hruza, A., Niu, X. D., Fossetta, J. D., Lunn, C. A., Dolphin, E., Prongay, A. J., Reichert, P., Lundell, D. J., Narula, S. K., & Weber, P. C. (1999). Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nature Structural Biology, 6(3), 233–242. https://doi.org/10.1038/6675
  • Galano, A., & Alvarez-Idaboy, J. R. (2014). Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods. Journal of Computational Chemistry, 35(28), 2019–2026. https://doi.org/10.1002/jcc.23715
  • Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J. R., & Russo, N. (2016). Food antioxidants: Chemical insights at the molecular level. Annual Review of Food Science and Technology, 7(1), 335–352. https://doi.org/10.1146/annurev-food-041715-033206
  • Higgins, P., Dawson, J., Lees, K. R., McArthur, K., Quinn, T. J., & Walters, M. R. (2012). Xanthine oxidase inhibition for the treatment of cardiovascular disease: A systematic review and meta-analysis. Cardiovascular Therapeutics, 30(4), 217–226. https://doi.org/10.1111/j.1755-5922.2011.00277.x
  • Iio, M., Ono, Y., Kai, S., & Fukumoto, M. (1986). Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase. Journal of Nutritional Science and Vitaminology, 32(6), 635–642. https://doi.org/10.3177/jnsv.32.635
  • Ingold, K. U., & Pratt, D. A. (2014). Advances in radical-trapping antioxidant chemistry in the 21st century: A kinetics and mechanisms perspective. Chemical Reviews, 114(18), 9022–9046. https://doi.org/10.1021/cr500226n
  • Klein, E., Rimarcik, J., & Lukes, V. (2009). DFT/B3LYP study of the O–H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene. Acta Chimica Slovaca, 2(2), 37–51.
  • Kleinert, H., Pautz, A., Linker, K., & Schwarz, P. M. (2004). Regulation of the expression of inducible nitric oxide synthase. European Journal of Pharmacology, 500(1-3), 255–266. https://doi.org/10.1016/j.ejphar.2004.07.030
  • Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
  • Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288–306. https://doi.org/10.1016/j.foodchem.2010.08.012
  • Lind, M., Hayes, A., Caprnda, M., Petrovic, D., Rodrigo, L., Kruzliak, P., & Zulli, A. (2017). Inducible nitric oxide synthase: Good or bad? Biomedicine & Pharmacotherapy, 93, 370–375. https://doi.org/10.1016/j.biopha.2017.06.036
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09., Gaussian, Inc.
  • Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 113(18), 6378–6396. https://doi.org/10.1021/jp810292n
  • Marín-García, J. (2014). Chapter 14 - Oxidative Stress and Cell Death in Cardiovascular Disease: A Post-Genomic Appraisal. In J. Marín-García (Ed.), Post-genomic cardiology (2nd ed., pp. 471–498). Academic Press.
  • Nagao, A., Seki, M., & Kobayashi, H. (1999). Inhibition of xanthine oxidase by flavonoids. Bioscience, Biotechnology, and Biochemistry, 63(10), 1787–1790. https://doi.org/10.1271/bbb.63.1787
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
  • Pandithavidana, D. R., & Jayawardana, S. B. (2019). Comparative study of antioxidant potential of selected dietary vitamins; computational insights. Molecules, 24(9), 1646.
  • Parker, V. D. (1992). Homolytic bond (H-A) dissociation free energies in solution. Applications of the standard potential of the (H+/H.bul.) couple. Journal of the American Chemical Society, 114(19), 7458–7462. https://doi.org/10.1021/ja00045a018
  • Santos, C. M. M., & Silva, A. (2020). The antioxidant activity of prenylflavonoids. Molecules, 25(3), 696. https://doi.org/10.3390/molecules25030696
  • Shang, Y., Zhou, H., Li, X., Zhou, J., & Chen, K. (2019a). Theoretical studies on the antioxidant activity of viniferifuran. New Journal of Chemistry, 43(39), 15736–15742. https://doi.org/10.1039/C9NJ02735A
  • Shoskes, D. A. (1998). Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: A new class of renoprotective agents: 1. Transplantation, 66(2), 147–152. https://journals.lww.com/transplantjournal/Fulltext/1998/07270/EFFECT_OF_BIOFLAVONOIDS_QUERCETIN_AND_CURCUMIN_ON.1.aspx. https://doi.org/10.1097/00007890-199807270-00001
  • Singh, S. P., & Konwar, B. K. (2012). Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. SpringerPlus, 1(1), 69.https://doi.org/10.1186/2193-1801-1-69.
  • Šmejkal, K. (2014). Cytotoxic potential of C-prenylated flavonoids. Phytochemistry Reviews, 13(1), 245–275. https://doi.org/10.1007/s11101-013-9308-2
  • Stepanić, V., Gall Trošelj, K., Lučić, B., Marković, Z., & Amić, D. (2013). Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chemistry, 141(2), 1562–1570. https://doi.org/10.1016/j.foodchem.2013.03.072
  • Tanaka, H., Etoh, H., Watanabe, N., Shimizu, H., Ahmad, M., & Rizwani, G. H. (2001). Erysubins C-F, four isoflavonoids from Erythrina suberosa var. glabrescences. Phytochemistry, 56(7), 769–773. https://doi.org/10.1016/S0031-9422(00)00441-6
  • Teles Fujishima, M., Silva, N., Ramos, R., Batista Ferreira, E., Santos, K., Silva, C., Silva, J., Campos Rosa, J., & Santos, C. (2018). An antioxidant potential, quantum-chemical and molecular docking study of the major chemical constituents present in the leaves of Curatella americana Linn. Pharmaceuticals, 11(3), 72. https://doi.org/10.3390/ph11030072
  • Tjahjandarie, T. S., & Tanjung, M. (2015). Phenolic compounds from the stem bark of Erythrina orientalis and their cytotoxic and antioxidant activities. Der Pharma Chemica, 7(1), 206–211.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Venturelli, S., Burkard, M., Biendl, M., Lauer, U. M., Frank, J., & Busch, C. (2016). Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition (Burbank, Los Angeles County, California), 32(11–12), 1171–1178. https://doi.org/10.1016/j.nut.2016.03.020
  • Wang, G., Xue, Y., An, L., Zheng, Y., Dou, Y., Zhang, L., & Liu, Y. (2015). Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chemistry, 171, 89–97. https://doi.org/10.1016/j.foodchem.2014.08.106
  • Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173–1183. https://doi.org/10.1021/ja002455u
  • Xiao, G., Li, G., Chen, L., Zhang, Z., Yin, J.-J., Wu, T., Cheng, Z., Wei, X., & Wang, Z. (2010). Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. Journal of Chromatography A, 1217(34), 5470–5476. https://doi.org/10.1016/j.chroma.2010.06.041
  • Xue, Y., Zheng, Y., An, L., Dou, Y., & Liu, Y. (2014). Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chemistry, 151, 198–206. https://doi.org/10.1016/j.foodchem.2013.11.064
  • Yang, X., Jiang, Y., Yang, J., He, J., Sun, J., Chen, F., Zhang, M., & Yang, B. (2015). Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends in Food Science & Technology, 44(1), 93–104. https://doi.org/10.1016/j.tifs.2015.03.007
  • Yao, L. H., Jiang, Y. M., Shi, J., TomÁS-BarberÁN, F. A., Datta, N., Singanusong, R., & Chen, S. S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 59(3), 113–122. https://doi.org/10.1007/s11130-004-0049-7
  • Zhao, Y., & Truhlar, D. G. (2008a). How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? The Journal of Physical Chemistry A, 112(6), 1095–1099. https://doi.org/10.1021/jp7109127
  • Zhao, Y., & Truhlar, D. G. (2008b). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x
  • Zheng, Y.-Z., Deng, G., Liang, Q., Chen, D.-F., Guo, R., & Lai, R.-C. (2017). Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Scientific Reports, 7(1), 7543.https://doi.org/10.1038/s41598-017-08024-8.
  • Zhou, H., Li, X., Shang, Y., & Chen, K. (2019). Radical scavenging activity of puerarin: A theoretical study. Antioxidants, 8(12), 590. https://doi.org/10.3390/antiox8120590

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.