370
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations

, , , ORCID Icon &
Pages 10543-10560 | Received 24 Feb 2021, Accepted 14 Jun 2021, Published online: 06 Jul 2021

References

  • Abbott, C. A., McCaughan, G. W., & Gorrell, M. D. (1999). Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Letters, 458, 278–284. https://doi.org/10.1016/S0014-5793(99)01166-7
  • Ansari, P., Hannon-Fletcher, M. P., Flatt, P. R., & Abdel-Wahab, Y. H. A. (2021). Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Bioscience Reports, 41.
  • Baggio, L., & Drucker, D. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology, 132, 2131–2157.
  • Bansal, Y., & Bansal, G. (2011). Analytical methods for standardization of Aegle marmelos, A Review. Journal of Pharmaceutical Education and Research, 2, 37–44.
  • Bhatti, R., Rawal, S., Singh, J., & Ishar, M. (2012). Effect of Aegle marmelos extract treatment on diabetic neuropathy in rats: A possible involvement of adrenoceptors. International Journal of Pharmacy and Pharmaceutical Science, 4, 0975–1491.
  • Bickers, D. (2005). A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients. Food and Chemical Toxicology, 43, 799–836.
  • Cao, Y., Charisi, A., Cheng, L., Jiang, T., & Girke, T. (2008). ChemmineR: A compound mining framework for R. Bioinformatics (Oxford, England), 24, 1733–1734.
  • Das, A., Padayatti, P., & Paulose, C. (1996). Effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb. on histological and ultrastructural changes in tissues of streptozotocin induced diabetic rats. Indian Journal of Experimental Biology, 34(4), 341–345.
  • DeLano, W. (2002). The PyMOL molecular graphics system. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Gautam, S., Ishrat, N., Singh, R., Narender, T., & Srivastav, A. (2015). Aegeline from Aegle marmelos stimulates glucose transport via Akt and Rac1 signaling, and contributes to a cytoskeletal rearrangement through PI3K/Rac1. European Journal of Pharmacology, 762, 419–429.
  • Grover, J., Yadav, S., & Vats, V. (2002). Medicinal plants of India with antidiabetic potential. Journal of Ethnopharmacology, 81(1), 81–100. https://doi.org/10.1016/S0378-8741(02)00059-4
  • Guengerich, F. (2003). Cytochromes P450, drugs, and diseases. Molecular Interventions, 3(4), 194–204.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • IDF. (2017). International Diabetes Federation. IDF Diabetes Atlas 8th Edition.
  • Islam, R., Hossain, M., Karim, M., & Joarder, O. (1995). Regeneration of Aegle marmelos (L.) Corr., plantlets in vitro from callus cultures of embryonic tissues. Current Science, 69, 494–495.
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
  • Kalhotra, P., Chittepu, V. S., Revilla, O., & Velázquez, G. (2018). Structure–activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules, 23(6), 1368. https://doi.org/10.3390/molecules23061368
  • Kamalakkannan, N., & Prince, P. (2005). The effect of Aegle marmelos fruit extract in streptozotocin diabetes: A histopathological study. Journal of Herbal Pharmacotherapy, 5(3), 87–96. https://doi.org/10.1080/J157v05n03_08
  • Kamalakkannan, N., & Stanely, P. (2003). Hypoglycemic effect on water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. Journal of Ethnopharmacology, 87(2–3), 207–210. https://doi.org/10.1016/S0378-8741(03)00148-X
  • Kar, A., Choudhary, B., & Bandyopadhyay, N. (2003). Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. Journal of Ethnopharmacology, 84(1), 105–108. https://doi.org/10.1016/S0378-8741(02)00144-7
  • Koes, D., & Camacho, C. (2012). ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Research, 40(Web Server issue), W409–414.
  • Kothari, S., Mishra, V., Bharat, S., & Tonpay, S. (2011). Antimicrobial activity and phytochemical screening of serial extracts from leaves of Aegle marmelos (Linn.). Acta Polonica Pharmaceutica, 68, 687–692.
  • Leeson, P. (2012). Drug discovery: Chemical beauty contest. Nature, 481(7382), 455–456. https://doi.org/10.1038/481455a
  • Lovshin, J., & Drucker, D. (2009). Incretin-based therapies for type 2 diabetes mellitus. Nature Reviews. Endocrinology, 5(5), 262–269.
  • Marsh, J., & Teichmann, S. (2011). Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure (London, England: 1993), 19(6), 859–867.
  • Marzine, P., & Gilbart, R. (2005). The effect of an aqueous extract of marmelos fruits on serum and tissue lipids in experimental diabetes. Journal of the Science of Food and Agriculture, 85, 569–573.
  • Moon, H.-I., Lee, J.-H., Lee, Y.-C., & Kim, K.-S. (2011). Antiplasmodial and cytotoxic activity of coumarin derivatives from dried roots of Angelica gigas Nakai in vitro immunopharmacology and immunotoxicology. Informa Healthcare USA, 33, 663–666.
  • Nisha, C., Kumar, A., Vimal, A., Bai, B., Pal, D., & Kumar, A. (2016). Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. Journal of Molecular Graphics & Modelling, 65, 100–107.
  • O'Boyle, N., Banck, M., James, C., Morley, C., Vandermeersch, T., & Hutchison, G. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
  • Ponnachan, P., Paulose, C., & Panikar, K. (1993). Effect of the leaf extract of Aegle marmelos (L.) Corr. in diabetic rats. Indian Journal of Experimental Biology, 31, 345–347.
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M., Smith, J., Kasson, P., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854.
  • Rahman, S., & Parvin, R. (2014). Therapeutic potential of Aegle marmelos (L.) – An overview. Asian Pacific Journal of Tropical Disease, 4(1), 71–77. https://doi.org/10.1016/S2222-1808(14)60318-2
  • Seema, P., Sudha, B., Padayatti, S., Abraham, A., Raghu, K., & Paulose, C. (1996). Kinetic studies of purified malate dehydrogenase in liver of streptozotozin – diabetic rats and the effect of leaf extract of Aegle marmelos (L.) Corr. Indian Journal of Experimental Biology, 34, 600–602.
  • Sekar, D. K., Kumar, G., Karthik, L., & Rao, K. V. B. (2011). A review on pharmacological and phytochemical properties of Aegle marmelos (L.) Corr. Serr. (Rutaceae). Asian Journal of Plant Science Research, 1, 8–17.
  • Shenoy, A., Singh, R., Samuel, R., Yedle, R., & Shabraya, A. (2012). Evaluation of antiulcer activity of Aegle marmelos leaves extract. International Journal of Pharmaceutical Sciences and Research, 3, 1498–1500.
  • Shnkar, T., Shanta, N., Ramesh, H., Murthy, I., & Murthy, V. (1980). Toxicity studies on turmeric (Cuecuma longa): Acute toxicity studies in rats, guineapigs and monkeys. Indian Journal Experimental Biology, 18, 73–75.
  • Shukla, H., Shukla, R., Sonkar, A., & Tripathi, T. (2017). Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochemical and Biophysical Research Communications, 490(2), 276–282.
  • Stein, S., Lamos, E., & Davis, S. (2013). A review of the efficacy and safety of oral antidiabetic drugs. Expert Opinion on Drug Safety, 12(2), 153–175.
  • Takahashi, N., Senda, M., Lin, S., Goto, T., Yano, M., Sasaki, T., Murakami, S., & Kawada, V. (2011). Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Molecular Nutrition & Food Research, 55(12), 1791–1797.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367.
  • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–446.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690.
  • Venkatesan, D., Karrunakarn, C., Kumar, S., & Swamy, P. (2009). Identification of phytochemical constituents of Aegle marmelos responsible for antimicrobial activity against selected pathogenic organisms. Ethnobotanical Leaflets, 13, 1362–1372.
  • Wallace, A., Laskowski, R., & Thornton, J. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134.
  • WHO. (2004). Aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters. Food Additives Series, 52, 1–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.