364
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in-silico study

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10403-10421 | Received 16 Feb 2021, Accepted 10 Jun 2021, Published online: 08 Jul 2021

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Barigye, R., Davis, S., Hunt, R., Hunt, N., Walsh, S., Elliott, N., Burnup, C., Aumann, S., Day, C., Dyrting, K., Weir, R., & Melville, L. F. (2016). Viral neurotropism, peripheral neuropathy and other morphological abnormalities in bovine ephemeral fever virus-infected downer cattle. Australian Veterinary Journal, 94(10), 362–370. https://doi.org/10.1111/avj.12482
  • Beloeil, H., Mazoit, J.-X., Benhamou, D., & Duranteau, J. (2005). Norepinephrine kinetics and dynamics in septic shock and trauma patients. British Journal of Anaesthesia, 95(6), 782–788. https://doi.org/10.1093/bja/aei259
  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336
  • Blake, J. F. (2000). Chemoinformatics–predicting the physicochemical properties of ‘drug-like’molecules. Current Opinion in Biotechnology, 11(1), 104–107. https://doi.org/10.1016/S0958-1669(99)00062-2
  • Briggs, J. M., Marrone, T. J., & McCammon, J. A. (1996). Computational science new horizons and relevance to pharmaceutical design. Trends in Cardiovascular Medicine, 6(6), 198–203. https://doi.org/10.1016/S1050-1738(96)00068-0
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., … Kollman, P. A. (2018). AMBER 2018. University of California.
  • Chandra, A., Gurjar, V., Ahmed, M. Z., Alqahtani, A. S., Qamar, I., & Singh, N. (2021). Exploring potential inhibitor of SARS-CoV2 replicase from FDA approved drugs using insilico drug discovery methods. Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2020.1871416
  • Cheng, Y., Frazier, M., Lu, F., Cao, X., & Redinbo, M. R. (2011). Crystal structure of the plant epigenetic protein arginine methyltransferase 10. Journal of Molecular Biology, 414(1), 106–122. https://doi.org/10.1016/j.jmb.2011.09.040
  • Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. Chemmedchem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davis, S., Gibson, D., & Clark, R. (1984). The effect of bovine ephemeral fever on milk production. Australian Veterinary Journal, 61(4), 128–130. https://doi.org/10.1111/j.1751-0813.1984.tb07211.x
  • Dhillon, J., Cowley, J. A., Wang, Y., & Walker, P. J. (2000). RNA polymerase (L) gene and genome terminal sequences of ephemeroviruses bovine ephemeral fever virus and Adelaide River virus indicate a close relationship to vesiculoviruses. Virus Research, 70(1–2), 87–95. https://doi.org/10.1016/S0168-1702(00)00215-X
  • Di, L. (2014). The role of drug metabolizing enzymes in clearance. Expert Opinion on Drug Metabolism & Toxicology, 10(3), 379–393. https://doi.org/10.1517/17425255.2014.876006
  • DiK, B., Avci, O., & DiK, I. (2019). In vitro antiviral and antioxidant activities of silymarin and panax ginseng on vero cells infected with bovine ephemeral fever virus and blue tongue virus. Acta Poloniae Pharmaceutica - Drug Research, 76(2), 291–297. https://doi.org/10.32383/appdr/96330
  • Dretchen, K. L., Mesa, Z., Robben, M., Slade, D., Hill, S., Croutch, C., Kappeler, K., & Mesa, M. (2020). Intranasal epinephrine in dogs: Pharmacokinetic and heart rate effects. Pharmacology Research & Perspectives, 8(2), e00587. https://doi.org/10.1002/prp2.587
  • Duan, W., Song, H., Wang, H., Chai, Y., Su, C., Qi, J., Shi, Y., & Gao, G. F. (2017). The crystal structure of Zika virus NS5 reveals conserved drug targets. The EMBO Journal, 36(7), 919–933. https://doi.org/10.15252/embj.201696241
  • Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122(12), 2878–2888. https://doi.org/10.1021/ja993663t
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. In Methods in enzymology (Vol. 277, pp. 396–404). Elsevier.
  • Elfiky, A. A. (2020). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477. https://doi.org/10.1016/j.lfs.2020.117477
  • Fearns, R., & Deval, J. (2016). New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase. Antiviral Research, 134, 63–76. https://doi.org/10.1016/j.antiviral.2016.08.006
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ghose, A. K., Herbertz, T., Hudkins, R. L., Dorsey, B. D., & Mallamo, J. P. (2012). Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chemical Neuroscience, 3(1), 50–68. https://doi.org/10.1021/cn200100h
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. https://doi.org/10.1016/S0022-2836(03)00610-7
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • He, C.-Q., Liu, Y.-X., Wang, H.-M., Hou, P.-L., He, H.-B., & Ding, N.-Z. (2016). New genetic mechanism, origin and population dynamic of bovine ephemeral fever virus. Veterinary Microbiology, 182, 50–56. https://doi.org/10.1016/j.vetmic.2015.10.029
  • Jonniya, N. A., & Kar, P. (2020). Investigating specificity of the anti-hypertensive inhibitor WNK463 against With-No-Lysine kinase family isoforms via multiscale simulations. Journal of Biomolecular Structure & Dynamics, 38(5), 1306–1321. https://doi.org/10.1080/07391102.2019.1602079
  • Jonniya, N. A., Sk, M. F., & Kar, P. (2019). Investigating phosphorylation-induced conformational changes in WNK1 kinase by molecular dynamics simulations. ACS Omega, 4(17), 17404–17416. https://doi.org/10.1021/acsomega.9b02187
  • Jonniya, N. A., Sk, M. F., & Kar, P. (2020). A comparative study of structural and conformational properties of WNK kinase isoforms bound to an inhibitor: Insights from molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1827035
  • Jonniya, N. A., Sk, M. F., & Kar, P. (2021a). Elucidating specificity of an allosteric inhibitor WNK476 among WNK isoforms using molecular dynamic simulations. Chemical Biology & Drug Design. https://doi.org/10.1111/cbdd.13863
  • Jonniya, N. A. A., Sk, M. F., & Kar, P. (2021b). Characterizing allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamic simulations. Physical Chemistry Chemical Physics, 23(12), 7343–7358. https://doi.org/10.1039/D0CP05733A
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kar, P., & Knecht, V. (2012a). Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir. Journal of Computer-Aided Molecular Design, 26(2), 215–232. https://doi.org/10.1007/s10822-012-9550-5
  • Kar, P., & Knecht, V. (2012b). Energetics of mutation-induced changes in potency of lersivirine against HIV-1 reverse transcriptase. The Journal of Physical Chemistry B, 116(22), 6269–6278. https://doi.org/10.1021/jp300818c
  • Kar, P., & Knecht, V. (2012b). Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease. The Journal of Physical Chemistry B, 116(8), 2605–2614. https://doi.org/10.1021/jp211768n
  • Kar, P., Lipowsky, R., & Knecht, V. (2011). Importance of polar solvation for cross-reactivity of antibody and its variants with steroids. The Journal of Physical Chemistry B, 115(23), 7661–7669. https://doi.org/10.1021/jp201538t
  • Kar, P., Wei, Y., Hansmann, U. H., & Höfinger, S. (2007). Systematic study of the boundary composition in Poisson Boltzmann calculations. Journal of Computational Chemistry, 28(16), 2538–2544. https://doi.org/10.1002/jcc.20698
  • Kaufmann, H. (2017). Droxidopa for symptomatic neurogenic orthostatic hypotension: What can we learn? Springer. https://doi.org/10.1007/s10286-017-0426-6
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kumar, B. K. F., Sekhar, K. V. G. C., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2020). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics, 1–24. https://doi.org/10.1080/07391102.2020.1824814
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, F. (2019). Bovine ephemeral fever in Asia: Recent status and research gaps. Viruses, 11(5), 412. https://doi.org/10.3390/v11050412
  • Liang, B., Li, Z., Jenni, S., Rahmeh, A. A., Morin, B. M., Grant, T., Grigorieff, N., Harrison, S. C., & Whelan, S. P. (2015). Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell, 162(2), 314–327. https://doi.org/10.1016/j.cell.2015.06.018
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • MacFarlane, D. (1955). Some observations on three day stiffsickness in the Transvaal in 1954. Journal of the South African Veterinary Association, 26, 1–7.
  • Maggiora, G. M., & Shanmugasundaram, V. (2011). Molecular similarity measures. In Chemoinformatics and computational chemical biology (pp. 39–100). Springer.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Malet, H., Egloff, M.-P., Selisko, B., Butcher, R. E., Wright, P. J., Roberts, M., Gruez, A., Sulzenbacher, G., Vonrhein, C., Bricogne, G., Mackenzie, J. M., Khromykh, A. A., Davidson, A. D., & Canard, B. (2007). Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. The Journal of Biological Chemistry, 282(14), 10678–10689. https://doi.org/10.1074/jbc.M607273200
  • Mirza, M. U., Vanmeert, M., Ali, A., Iman, K., Froeyen, M., & Idrees, M. (2019). Perspectives towards antiviral drug discovery against Ebola virus. Journal of Medical Virology, 91(12), 2029–2048. https://doi.org/10.1002/jmv.25357
  • Murphy, F. A., Taylor, W. P., Mims, C. A., & Whitfield, S. G. (1972). Bovine ephemeral fever virus in cell culture and mice. Archiv Fur Die Gesamte Virusforschung, 38(2), 234–249. https://doi.org/10.1007/BF01249675
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa Predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Panda, P. K., Arul, M. N., Patel, P., Verma, S. K., Luo, W., Rubahn, H.-G., Mishra, Y. K., Suar, M., & Ahuja, R. (2020). Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Science Advances, 6(28), eabb8097. https://doi.org/10.1126/sciadv.abb8097
  • Parvez, M. S. A., Karim, M. A., Hasan, M., Jaman, J., Karim, Z., Tahsin, T., Hasan, M. N., & Hosen, M. J. (2020). Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. International Journal of Biological Macromolecules, 163, 1787–1797. https://doi.org/10.1016/j.ijbiomac.2020.09.098
  • Pastor, R. W., Brooks, B. R., & Szabo, A. (1988). An analysis of the accuracy of Langevin and molecular dynamics algorithms. Molecular Physics, 65(6), 1409–1419. https://doi.org/10.1080/00268978800101881
  • Pattnaik, A., Palermo, N., Sahoo, B. R., Yuan, Z., Hu, D., Annamalai, A. S., Vu, H. L. X., Correas, I., Prathipati, P. K., Destache, C. J., Li, Q., Osorio, F. A., Pattnaik, A. K., & Xiang, S.-H. (2018). Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening. Antiviral Research, 151, 78–86. https://doi.org/10.1016/j.antiviral.2017.12.016
  • Peersen, O. B. (2017). Picornaviral polymerase structure, function, and fidelity modulation. Virus Research, 234, 4–20. https://doi.org/10.1016/j.virusres.2017.01.026
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Ribaudo, G., Ongaro, A., Oselladore, E., Zagotto, G., Memo, M., & Gianoncelli, A. (2020). A computational approach to drug repurposing against SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2020.1822209
  • Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roux, B., Nina, M., Pomès, R., & Smith, J. C. (1996). Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: A molecular dynamics free energy perturbation study. Biophysical Journal, 71(2), 670–681. https://doi.org/10.1016/S0006-3495(96)79267-6
  • Roy, R., Ghosh, B., & Kar, P. (2020). Investigating conformational dynamics of Lewis y oligosaccharides and elucidating blood group dependency of cholera using molecular dynamics. ACS Omega, 5(8), 3932–3942. https://doi.org/10.1021/acsomega.9b03398
  • Roy, R., Mishra, A., Poddar, S., Nayak, D., & Kar, P. (2020a). Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1838327
  • Roy, R., Sk, M. F., Jonniya, N. A., Poddar, S., & Kar, P. (2020b). Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening. ADMET, and Molecular Dynamic Simulation Studies. https://doi.org/10.1080/07391102.2021.1897680
  • Salomon‐Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Singh, A., & Jana, N. K. (2017). Discovery of potential Zika virus RNA polymerase inhibitors by docking-based virtual screening. Computational Biology and Chemistry, 71, 144–151. https://doi.org/10.1016/j.compbiolchem.2017.10.007
  • Singh, J., Malik, D., & Raina, A. (2020). Computational investigation for identification of potential phytochemicals and antiviral drugs as potential inhibitors for RNA-dependent RNA polymerase of COVID-19. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1847688
  • Singh, S., Sk, M. F., Sonawane, A., Kar, P., & Sadhukhan, S. (2020). Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1796810
  • Sk, M. F., Jonniya, N. A., & Kar, P. (2020a). Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1794965
  • Sk, M. F., Jonniya, N. A., Roy, R., Poddar, S., & Kar, P. (2020b). Computational investigation of structural dynamics of SARS-CoV-2 methyltransferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM. Frontiers in Molecular Biosciences, 7, 590165. https://doi.org/10.3389/fmolb.2020.590165
  • Sk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2020c). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics, 39, 3649–3661. https://doi.org/10.1080/07391102.2020.1768149
  • Sk, M. F., Roy, R., & Kar, P. (2021). Exploring the potency of currently used drugs against HIV-1 protease of subtype D variant by using multiscale simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 988–1003. https://doi.org/10.1080/07391102.2020.1724196
  • St George, T. (1986). The epidemiology of bovine ephemeral fever in Australia and its economic effect. Arbovirus research in Australia. Proceedings Fourth Symposium May 6-9, 1986, Brisbane, Australia, CSIRO.
  • Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Götte, M. (2019). Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses, 11(4), 326. https://doi.org/10.3390/v11040326
  • Thurakkal, L., Singh, S., Roy, R., Kar, P., Sadhukhan, S., & Porel, M. (2020). An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chemical Physics Letters, 763, 138193.
  • Tian, L., Qiang, T., Liang, C., Ren, X., Jia, M., Zhang, J., Li, J., Wan, M., YuWen, X., Li, H., Cao, W., & Liu, H. (2021). RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. European Journal of Medicinal Chemistry, 213, 113201. https://doi.org/10.1016/j.ejmech.2021.113201
  • Tiong-Yip, C.-L., Aschenbrenner, L., Johnson, K. D., McLaughlin, R. E., Fan, J., Challa, S., Xiong, H., & Yu, Q. (2014). Characterization of a respiratory syncytial virus L protein inhibitor. Antimicrobial Agents and Chemotherapy, 58(7), 3867–3873. https://doi.org/10.1128/AAC.02540-14
  • Tortorici, M. A., Walls, A. C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.-J., Bosch, B.-J., Rey, F. A., de Groot, R. J., & Veesler, D. (2019). Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural & Molecular Biology, 26(6), 481–489. https://doi.org/10.1038/s41594-019-0233-y
  • Tseng, H.-H., Huang, W.-R., Cheng, C.-Y., Chiu, H.-C., Liao, T.-L., Nielsen, B. L., & Liu, H.-J. (2020). Aspirin and 5-aminoimidazole-4-carboxamide riboside attenuate bovine ephemeral fever virus replication by inhibiting BEFV-induced autophagy. Frontiers in Immunology, 11, 556838. https://doi.org/10.3389/fimmu.2020.556838
  • Varshney, J., Sharma, P., & Sharma, A. (2012). A review on an update of NS5B polymerase hepatitis C virus inhibitors. European Review for Medical and Pharmacological Sciences, 16, 667–671.
  • Velazquez-Campoy, A., Vega, S., & Freire, E. (2002). Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes. Biochemistry, 41(27), 8613–8619. https://doi.org/10.1021/bi020160i
  • Walker, P. (2005). Bovine ephemeral fever in Australia and the world. In The world of rhabdoviruses. Springer. 57–80.
  • Walker, P. J., Byrne, K. A., Cybinski, D. H., Doolan, D. L., & Wang, Y. (1991). Proteins of bovine ephemeral fever virus. Journal of General Virology, 72(1), 67–74. https://doi.org/10.1099/0022-1317-72-1-67
  • Walker, P. J., & Klement, E. (2015). Epidemiology and control of bovine ephemeral fever. Veterinary Research, 46, 124. https://doi.org/10.1186/s13567-015-0262-4
  • Wang, J. (2013). Molecular dynamics simulations of a protein crystal. Bioenergetics, 2, e117.
  • Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual Review of Biophysics and Biomolecular Structure, 30, 211–243. https://doi.org/10.1146/annurev.biophys.30.1.211
  • Wang, W., & Kollman, P. A. (2001). Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 14937–14942. https://doi.org/10.1073/pnas.251265598
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wass, M. N., Kelley, L. A., & Sternberg, M. J. (2010). 3DLigandSite: Predicting ligand-binding sites using similar structures. Nucleic Acids Research, 38(Web Server issue), W469–W473. https://doi.org/10.1093/nar/gkq406
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wu, D., & Lehane, M. (1999). Pteridine fluorescence for age determination of Anopheles mosquitoes. Medical and Veterinary Entomology, 13(1), 48–52. https://doi.org/10.1046/j.1365-2915.1999.00144.x
  • Yanase, T., Murota, K., & Hayama, Y. (2020). Endemic and emerging arboviruses in domestic ruminants in East Asia. Frontiers in Veterinary Science, 7, 168. https://doi.org/10.3389/fvets.2020.00168
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
  • Yang, J., Roy, A., & Zhang, Y. (2013). Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588–2595. https://doi.org/10.1093/bioinformatics/btt447
  • Ye, Y., & Godzik, A. (2004). FATCAT: A web server for flexible structure comparison and structure similarity searching. Nucleic Acids Research, 32(Web Server issue), W582–W585. https://doi.org/10.1093/nar/gkh430
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. https://doi.org/10.1186/1471-2105-9-40
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.