441
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Emetine, a potent alkaloid for the treatment of SARS-CoV-2 targeting papain-like protease and non-structural proteins: pharmacokinetics, molecular docking and dynamic studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 10122-10135 | Received 23 May 2020, Accepted 02 Jun 2021, Published online: 13 Jul 2021

References

  • Abu-Saleh, A. A. A., Awad, I. E., Yadav, A., & Poirier, R. A. (2020). Discovery of potent inhibitors for SARS-CoV-2’s main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Physical Chemistry Chemical Physics, 22(40), 23099–23106. https://doi.org/10.1039/d0cp04326e.
  • Akinboye, E. S., & Bakare, O. (2011). Biological activities of emetine. The Open Natural Products Journal, 4, 8–15. https://doi.org/10.2174/1874848101104010008
  • Andersen, P. I., Krpina, K., Ianevski, A., Shtaida, N., Jo, E., Yang, J., Koit, S., Tenson, T., Hukkanen, V., Anthonsen, M. W., Bjoras, M., Evander, M., Windisch, M. P., Zusinaite, E., & Kainov, D. E. (2019). Novel antiviral activities of obatoclax, emetine, niclosamide, brequinar, and homoharringtonine. Viruses, 11(10), 964. https://doi.org/10.3390/v11100964
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Weissig, H., Shindaylov, I. N., & Bourne, P. E. (2000). RCSB Protein Data Bank: Structural biology views for basic and applied research. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/gku1214
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Biovia, D. S. (2017). Discovery studio visualizer.
  • Bleasel, M. D., & Peterson, G. M. (2020). Emetine, ipecac, ipecac alkaloids and analogues as potential antiviral agents for coronaviruses. Pharmaceuticals, 13(3), 51. https://doi.org/10.3390/ph13030051
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Chandel, V., Raj, S., Rathi, B., & Kumar, D. (2020). In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. Preprints, 2020030349. https://doi.org/10.20944/preprints202003.0349.v1
  • DeLano, W. L. (2009). PyMOL: An open-source molecular graphics tool. DeLano Scientific.
  • Deng, L., Dai, P., Ciro, A., Smee, D. F., Djaballah, H., & Shuman, S. (2007). Identification of novel antipoxviral agents: Mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. Journal of Virology, 81(24), 13392–13402. https://doi.org/10.1128/JVI.00770-07
  • Dyall, J., Coleman, C. M., Hart, B. J., Venkataraman, T., Holbrook, M. R., Kindrachuk, J., Johnson, R. F., Olinger, G. G., Jahrling, P. B., Laidlaw, M., Johansen, L. M., Lear-Rooney, C. M., Glass, P. J., Hensley, L. E., & Frieman, M. B. (2014). Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrobial Agents and Chemotherapy, 58(8), 4885–4893. https://doi.org/10.1128/AAC.03036-14
  • Elfiky, A. A. (2020). Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1761881
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2021). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 39(8), 1–13.
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Gouklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2021). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 39(8), 2857–2872. https://doi.org/10.1080/07391102.2020.1756411
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2021). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 39(9), 3092–3098, https://doi.org/10.1080/07391102.2020.1760136
  • Ferron, F., Subissi, L., Silveira De Morais, A. T., Le, N. T. T., Sevajol, M., Gluais, L., Decroly, E., Vonrhein, C., Bricogne, G., Canard, B., & Imbert, I. (2018). Imbert, I. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences of the United States of America, 115(2), E162–E171. https://doi.org/10.1073/pnas.1718806115
  • Ferron, F., Gluais, L., Vonrhein, C., Bricogne, G., Canard, B., & Imbert, I. (2018). SARS-CoV nsp10/nsp14 dynamic complex. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb5nfy/pdb
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Foy, G. (1912). Ipecacuanha and emetine. The Lancet, 180(4653), 1242. https://doi.org/10.1016/S0140-6736(01)40715-X
  • Fu, H., Gumbart, J. C., Chen, H., Shao, X., Cai, W., & Chipot, C. (2018). BFEE: A user-friendly graphical interface facilitating absolute binding free-energy calculations. Journal of Chemical Information and Modeling, 58(3), 556–560. https://doi.org/10.1021/acs.jcim.7b00695
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Garcia, R. M. A., Oliveira, L. O., Moreira, M. A., & Barros, W. S. (2005). Variation in emetine and cephaeline contents in roots of wild ipecac (psychotria ipecacuanha). Biochemical Systematics and Ecology, 33(3), 233–243. https://doi.org/10.1016/j.bse.2004.08.005
  • Grollman, A. P. (1966). Structural basis for inhibition of protein synthesis by emetine and cycloheximide based on an analogy between ipecac alkaloids and glutarimide antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 56(6), 1867–1874. https://doi.org/10.1073/pnas.56.6.1867
  • Gupta, A. (2020). Profiling molecular simulations of SARS-CoV-2 main protease (Mpro) binding to repurposed drugs using neural network force fields.
  • Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., & Afolabi, S. O. (2021). Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics, 39(9), 3396–3408, https://doi.org/10.1080/07391102.2020.1764868
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Al Mamun, A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(9), 3213–3224, https://doi.org/10.1080/07391102.2020.1761883
  • Khan, M. T., Ali, A., Wang, Q., Irfan, M., Khan, A., Zeb, M. T., Zhang, Y.-J., Chinnasamy, S., & Wei, D.-Q. (2021). Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2. A molecular dynamic study. Journal of Biomolecular Structure and Dynamics, 39(10), 3627–3637. https://doi.org/10.1080/07391102.2020.1769733
  • Khandelwal, N., Chander, Y., Rawat, K. D., Riyesh, T., Nishanth, C., Sharma, S., Jindal, N., Tripathi, B. N., Barua, S., & Kumar, N. (2017). Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants. Antiviral Research, 144, 196–204. https://doi.org/10.1016/j.antiviral.2017.06.006
  • Kim, Y., Jedrzejczak, R., Maltseva, N. I., Wilamowski, M., Endres, M., Godzik, A., Michalska, K., & Joachimiak, A. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS‐CoV‐2. Protein Science, 29(7), 1596–1605. https://doi.org/10.1002/pro.3873
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Krafcikova, P., Silhan, J., Nencka, R., & Boura, E. (2020). Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature Communications, 11(1), 3717. https://doi.org/10.1038/s41467-020-17495-9
  • Krafcikova, P., Silhan, J., Nencka, R., & Boura, E. (2020). The crystal structure of SARS-CoV-2 nsp10-nsp16 methyltransferase complex with Sinefungin. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb6yz1/pdb
  • Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2020). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 1–13, https://doi.org/10.1080/07391102.2020.1772108
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Liu, W., Morse, J. S., Lalonde, T., & Xu, S. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem : A European Journal of Chemical Biology, 21(5), 730–738.https://doi.org/10.26434/chemrxiv.11728983.v1
  • Liu, H., & Hou, T. (2016). CaFE: A tool for binding affinity prediction using end-point free energy methods. Bioinformatics (Oxford, England), 32(14), 2216–2218. https://doi.org/10.1093/bioinformatics/btw215
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Low, Y. J. S., Chen, K. C., Wu, K. X., Mah-Lee Ng, M., & Chu, H. J. J. (2009). Antiviral activity of emetine dihydrochloride against dengue virus infection. Journal of Antivirals & Antiretrovirals, 1(2), 62–71. https://doi.org/10.4172/jaa.1000009
  • MacGibeny, M. A., Koyuncu, O. O., Wirblich, C., Schnell, M. J., & Enquist, L. W. (2018). Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons. Plos Pathogens, 14(7), e1007188.
  • Mehrotra, P. K., Kitchlu, S., Dwivedi, A., Agnihotri, P. K., Srivastava, S., Roy, R., & Bhaduri, A. P. (2004). Emetine ditartrate: A possible lead for emergency contraception. Contraception, 69(5), 379–387. https://doi.org/10.1016/j.contraception.2003.12.011
  • Menendez, C. A., Accordino, S. R., Gerbino, D. C., & Appignanesi, G. A. (2016). Hydrogen bond dynamic propensity studies for protein binding and drug design. PloS One, 11(10), e0165767. https://doi.org/10.1371/journal.pone.0165767
  • Mosquera-Yuqui, F., Lopez-Guerra, N., & Moncayo-Palacio, E. A. (2020). Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: Molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–14.
  • Mukhopadhyay, R., Roy, S., Venkatadri, R., Su, Y. P., Ye, W., Barnaeva, E., Griner, L. M., Southall, N., Hu, X., Wang, A. Q., Xu, X., Dulcey, A. E., Marugan, J. J., Ferrer, M., & Arav-Boger, R. (2016). Efficacy and mechanism of action of low dose emetine against human Cytomegalovirus. PLoS Pathogens, 12(6), e1005717. https://doi.org/10.1371/journal.ppat.1005717
  • Othman, I. M. M., Gad-Elkareem, M. A. M., El-Hassane, A., Aouadi, K., Kadri, A., & Snoussi, M. (2020). Design, synthesis ADMET and molecular docking of new imidazo[4,5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors. Bioorganic Chemistry, 102, 104105. https://doi.org/10.1016/j.bioorg.2020.104105
  • Parida, P. K., Paul, D., & Chakravorty, D. (2021). Nature's therapy for COVID-19: Targeting the vital non-structural proteins (NSP) from SARS-CoV-2 with phytochemicals from Indian medicinal plants. Phytomedicine Plus, 1(1), 100002. https://doi.org/10.1016/j.phyplu.2020.100002
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Rosa, S.,S antos, W. C. (2020). Clinical trials on drug repositioning for COVID-19 treatment. Revista panamericana de salud publica = Pan American journal of public health, 44, e40. https://doi.org/10.26633/RPSP.2020.40
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1), 57–61.
  • Scragg, J. N., & Powell, S. J. (1966). Emetine hydrochloride and chloroquine in the treatment of children with amoebic liver abscess. Archives of Disease in Childhood, 41(219), 549–550. https://doi.org/10.1136/adc.41.219.549
  • Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., Deng, Y., Wang, H., Ye, F., Cen, S., & Tan, W. (2019). High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. Journal of Virology, 93(12), e00023-19. https://doi.org/10.1128/JVI.00023-19
  • Sinha, S. K., Prasad, S. K., Islam, M. A., Gurav, S. S., Patil, R. B., AlFaris, N. A., … Shakya, A. (2020). Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study. Journal of Biomolecular Structure and Dynamics, 1–15.
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gurav, S. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure and Dynamics, 1–15, https://doi.org/10.1080/07391102.2020.1762741
  • Su, H. X., Yao, S., Zhao, W. F., Li, M. J., Zhang, L. K., Ye, Y., Jiang, H. L., & Xu, Y. C. (2020). Identification of a novel inhibitor of SARS-CoV-2 3Clpro. Published online, https://doi.org/10.2210/pdb6m2n/pdb
  • Su, H. X., Zhao, W. F., Li, M. J., Xie, H., & Xu, Y. C. (2020). SARS-CoV-2 3CL protease (3CL pro) in complex with a novel inhibitor. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb6m2n/pdb
  • Umesh, Kundu, D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 39(9), 3428–3434, https://doi.org/10.1080/07391102.2020.1763202
  • Valadão, A. L. C., Abreu, C. M., Dias, J., Arantes, P., Verli, H., Tanuri, A., & de Aguiar, R. S. (2015). Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules (Basel, Switzerland), 20(6), 11474–11489. https://doi.org/10.3390/molecules200611474
  • Van Hoose, B. (1912). Emetine hydrochloride in malignancy. Women's Health Medicine - Journal, 29, 102–116.
  • Vedder, E. B. (1912). An experimental study of the action of ipecacuanha on amoebae. Journal of Tropical Medicine and Hygiene, 15, 313–314.
  • Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2020). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 39(9), 3225–3234, https://doi.org/10.1080/07391102.2020.1762743
  • Wiegrebe, W., Kramer, W. J., & Shamma, M. (1984). The emetine alkaloids. Journal of Natural Products, 47(3), 397–408. https://doi.org/10.1021/np50033a001
  • Wong, W., Bai, X. C., Brown, A., Fernandez, I. S., Hanssen, E., Condron, M., Tan, Y. H., Baum, J., & Scheres, S. H. W. (2014). Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the antiprotozoan drug emetine. eLife, 3(3), e03080. https://doi.org/10.7554/eLife.03080
  • Wong, A. K. L., & Goscinski, A. (2012). The design and implementation of the VMD plugin for NAMD simulations on the Amazon cloud. International Journal of Cloud Computing and Services Science (IJ-CLOSER), 1(4), 155. https://doi.org/10.11591/closer.v1i4.1284
  • Yang, W. C., & Dubick, M. (1980). Mechanism of emetine cardiotoxicity. Pharmacology & Therapeutics, 10(1), 15–26. https://doi.org/10.1016/0163-7258(80)90007-8
  • Yang, S., Xu, M., Lee, E. M., Gorshkov, K., Shiryaev, S. A., He, S., Sun, W., Cheng, Y.-S., Hu, X., Tharappel, A. M., Lu, B., Pinto, A., Farhy, C., Huang, C.-T., Zhang, Z., Zhu, W., Wu, Y., Zhou, Y., Song, G., … Zheng, W. (2018). Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discovery, 4, 31. https://doi.org/10.1038/s41421-018-0034-1
  • Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by Molecular docking. International Journal of Antimicrobial Agents, 56(2), 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.