208
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A detailed theoretical exploration on the THR-β binding affinities and antioxidant activity of some halogenated bisphenols

ORCID Icon, &
Pages 10835-10851 | Received 06 Dec 2020, Accepted 28 Jun 2021, Published online: 19 Jul 2021

References

  • Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. Journal of Chemical Physics, 96, 2155.
  • Ahmad, S., Arshad, M. A., Ijaz, S., Khurshid, U., Rashid, F., & Azam, R. (2014). Review on methods used to determine antioxidant activity. International Journal of Multidisciplinary Research & Development, 1, 35.
  • Akbaba, Y., Balaydın, H. T., Menzek, A., Göksu, S., Şahin, E., & Ekinci, D. (2013). Synthesis and biological evaluation of novel bromophenol derivatives as carbonic anhydrase inhibitors. Archiv der Pharmazie, 346(6), 447–454. https://doi.org/10.1002/ardp.201300054
  • Akinori, I., Sawatsubashi, S., & Yamauchi, K. (2003). Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Molecular and Cellular Endocrinology, 199, 105.
  • Balaydın, H. T., Gülçin, İ., Menzek, A., Göksu, S., & Şahin, E. (2010). Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5), 685–695. https://doi.org/10.3109/14756360903514164
  • Balaydın, H. T., Soyut, H., Ekinci, D., Göksu, S., Beydemir, S., Menzek, A., & Sahin, E. (2012). Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols including natural products. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(1), 43–50. https://doi.org/10.3109/14756366.2011.574131
  • Behazin, R., & Ebrahimi, A. (2018). The physicochemical properties and tyrosinase inhibitory activity of ectoine and its analogues: A theoretical study. Computational and Theoretical Chemistry, 1130, 6–14. https://doi.org/10.1016/j.comptc.2018.03.003
  • Bleicher, L., Aparicio, R., Nunes, F. M., Martinez, L., Gomes Dias, S. M., Figueira, A. C. M., Santos, M. A. M., Venturelli, W. H., da Silva, R., Donate, P. M., Neves, F. A., Simeoni, L. A., Baxter, J. D., Webb, P., Skaf, M. S., & Polikarpov, I. (2008). Structural basis of GC-1 selectivity for thyroid hormone receptor isoforms. BMC Structural Biology, 8, 8. https://doi.org/10.1186/1472-6807-8-8
  • Buch, I., Giorgino, T., & De Fabritiis, G. (2011). Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10184–10189. https://doi.org/10.1073/pnas.1103547108
  • Case, D. A., Berryman, J. T., Betz, R. M., Cerutti, D. S., Cheatham, T. E., Darden, I. I. I. T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Luchko, T.,… Kollman, P. A. (2015). Amber Tools 14. University of California, San Francisco.
  • Chung, L. W., Sameera, W. M. C., Ramozzi, R., Page, A. J., Hatanaka, M., Petrova, G. P., Harris, T. V., Li, X., Ke, Z., Liu, F., Li, H.-B., Ding, L., & Morokuma, K. (2015). The ONIOM method and its applications. Chemical Reviews, 115(12), 5678–5796. https://doi.org/10.1021/cr5004419
  • Duan, X. J., Li, X. M., & Wang, B. G. (2007). Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity. Journal of Natural Products, 70(7), 1210–1213. https://doi.org/10.1021/np070061b
  • Erin, M. K., Carbonnel, L. D., Stapleton, H. M., & Ferguson, P. L. (2018). The affinity of brominated phenolic compounds for human and zebrafish thyroid receptor β: Influence of chemical structure. Toxicological Sciences, 163, 226.
  • Faghih, Z., Fereidoonnezhad, M., Tabaei, S. M. H., Rezaei, Z., & Zolghadr, A. R. (2015). The binding of small carbazole derivative (P7C3) to protofibrils of the Alzheimer’s disease and β-secretase: Molecular dynamics simulation studies. Chemical Physics, 459, 31–39. https://doi.org/10.1016/j.chemphys.2015.07.026
  • Fei, L., Xie, Q., Li, X., Li, N., Chi, P., Chen, J., Wang, Z., & Hao, C. (2010). Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: In vitro and in silico investigations. Environmental Health Perspectives, 118, 602.
  • Flodin, C., & Whitfield, F. B. (1999). Biosynthesis of bromophenols in marine algae. Water Science and Technology, 40(6), 53–58. https://doi.org/10.2166/wst.1999.0260
  • Frisch, M. J., Hratchian, H. P., Dennington, R. D., Todd, A., Keith, T. A., and Millam, J. (2009). GaussView 5. Gaussian, Inc.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Cari-Cato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M. … Fox, D. J. (2009). Gaussian 09, revision A.02. Gaussian, Inc.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gordon, G. W. (1999). The diversity of naturally occurring organobromine compounds. Chemical Society Reviews, 28, 335.
  • Hohenstein, E. G., Chill, S. T., & Sherrill, C. D. (2008). Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules. Journal of Chemical Theory and Computation, 4(12), 1996–2000. https://doi.org/10.1021/ct800308k
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hye, L. J., Lee, T. K., Kang, R. S., Shin, H. J., & Lee, H. S. (2007). The in vitro antioxidant activities of the bromophenols from the red alga Tichocarpus crinitus and phenolic derivatives. Journal of Korean Magnetic Resonance Society, 11, 56.
  • Ishihara, A., Nishiyama, N., Sugiyama, S. I., & Yamauchi, K. (2003). The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. General and Comparative Endocrinology, 134(1), 36–43. https://doi.org/10.1016/S0016-6480(03)00197-7
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Joharapurkar, A. A., Dhote, V. V., & Jain, M. R. (2012). Selective thyromimetics using receptor and tissue selectivity approaches: Prospects for dyslipidemia. Journal of Medicinal Chemistry, 55(12), 5649–5675. https://doi.org/10.1021/jm2004706
  • Johnson, B. G., Gill, P. M. W., Pople, J. A., & Fox, D. J. (1993). Computing molecular electrostatic potentials with the PRISM algorithm. Chemical Physics Letters, 206(1–4), 239–246. https://doi.org/10.1016/0009-2614(93)85547-2
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Ke, L., Li, X. M., Ji, N. Y., & Wang, B. G. (2008). Bromophenols from the marine red alga Polysiphonia urceolata with DPPH radical scavenging activity. Journal of Natural Products, 71, 28.
  • Kitamura, S., Shinohara, S., Iwase, E., Sugihara, K., Uramaru, N., Shigematsu, H., Fujimoto, N., & Ohta, S. (2008). Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers. Journal of Health Science, 54(5), 607–614. https://doi.org/10.1248/jhs.54.607
  • Kitisripanya, N., Saparpakorn, P., Wolschann, P., & Hannongbua, S. (2011). Binding of huperzine A and galanthamine to acetylcholinesterase, based on ONIOM method. Nanomedicine: Nanotechnology, Biology and Medicine, 7(1), 60–68. https://doi.org/10.1016/j.nano.2010.08.004
  • Kohnke, B., Kutzner, C., & Grubmüller, H. (2020). A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. Journal of Chemical Theory and Computation, 16(11), 6938–6949. https://doi.org/10.1021/acs.jctc.0c00744
  • Kollitz, E. M., Carbonnel, L. D., Stapleton, H. M., & Ferguson, P. L. (2018). The affinity of brominated phenolic compounds for human and zebrafish thyroid receptor β: Influence of chemical structure. Toxicological Sciences: An Official Journal of the Society of Toxicology, 163(1), 226–239. https://doi.org/10.1093/toxsci/kfy028
  • Kurata, K., Taniguchii, K., Takashima, K., Hayashi, I., & Suzuki, M. (1997). Feeding-deterrent bromophenols from Odonthalia corymbifera. Phytochemistry, 45(3), 485–487. https://doi.org/10.1016/S0031-9422(97)00014-9
  • Lee, C., Yang, W., & Parr, R. G. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Leonetti, C., Butt, C. M., Hoffman, K., Miranda, M. L., & Stapleton, H. M. (2016). Concentrations of polybrominated diphenyl ethers (PBDEs) and 2,4,6-tribromophenol in human placental tissues. Environment International, 88, 23–29. https://doi.org/10.1016/j.envint.2015.12.002
  • Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288–306. https://doi.org/10.1016/j.foodchem.2010.08.012
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Liu, M., Hansen, P. E., & Lin, X. (2011). Bromophenols in marine algae and their bioactivities. Marine Drugs, 9(7), 1273–1292. https://doi.org/10.3390/md9071273
  • Maestro, V. (2017). Schrödinger Release 2017-1. Schrodinger, LLC.
  • Matthieu, S., Raaka, B. M., Das, S., Fan, L., Totrov, M., Zhou, Z., Wilson, S. R., Abagyan, R., & Samuels, H. H. (2003). Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proceedings of the National Academy of Sciences of the United States of America, 100, 7354.
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Ming, L., Hansen, P. E., & Lin, X. (2011). Bromophenols in marine algae and their bioactivities. Marine Drugs, 9, 1273.
  • Mondal, S., & Mugesh, G. (2017). Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Molecular and Cellular Endocrinology, 458, 91–104. https://doi.org/10.1016/j.mce.2017.04.006
  • Nascimento, A. S., Dias, S. M. G., Nunes, F. M., Aparício, R., Ambrosio, A. L. B., Bleicher, L., Figueira, A. C. M., Santos, M. A. M., Neto, M. D. O., Fischer, H., Togashi, M., Craievich, A. F., Garratt, R. C., Baxter, J. D., Webb, P., & Polikarpov, I. (2006). Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. Journal of Molecular Biology, 360(3), 586–598. https://doi.org/10.1016/j.jmb.2006.05.008
  • Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry: PPB, 144, 135–143. https://doi.org/10.1016/j.plaphy.2019.09.039
  • Ortega-Domínguez, B., Aparicio-Trejo, O. E., García-Arroyo, F. E., León-Contreras, J. C., Tapia, E., Molina-Jijón, E., Hernández-Pando, R., Sánchez-Lozada, L. G., Barrera-Oviedo, D., & Pedraza-Chaverri, J. (2017). Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 107(Pt A), 373–385. https://doi.org/10.1016/j.fct.2017.07.018
  • Ovalle-Magallanes, B., Eugenio-Pérez, D., & Pedraza-Chaverri, J. (2017). Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 109(Pt 1), 102–122. https://doi.org/10.1016/j.fct.2017.08.021
  • Öztaskın, N., Taslimi, P., Maraş, A., Gülcin, İ., & Göksu, S. (2017). Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorganic Chemistry, 74, 104–114. https://doi.org/10.1016/j.bioorg.2017.07.010
  • Qi, R., Walker, B., Jing, Z., Yu, M., Stancu, G., Edupuganti, R., Dalby, K. N., & Ren, P. (2019). Computational and experimental studies of inhibitor design for Aldolase A. The Journal of Physical Chemistry. B, 123(28), 6034–6041. https://doi.org/10.1021/acs.jpcb.9b04551
  • Ren, X. M., Guo, L. H., Gao, Y., Zhang, B. T., & Wan, B. (2013). Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicology and Applied Pharmacology, 268(3), 256–263. https://doi.org/10.1016/j.taap.2013.01.026
  • Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M. (2010). Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Journal of Molecular Structure: Theochem, 952(1–3), 25–30. https://doi.org/10.1016/j.theochem.2010.04.002
  • Romero, F. A., Jones, C. T., Xu, Y., Fenaux, M., & Halcomb, R. L. (2020). The race to bash NASH: Emerging targets and drug development in a complex liver disease. Journal of Medicinal Chemistry, 63(10), 5031–5073. https://doi.org/10.1021/acs.jmedchem.9b01701
  • Schrödinger. (2017). Release, Schrödinger. 4: Prime. Schrödinger, LLC.
  • Senthil Kumar, K., & Kumaresan, R. (2012). A DFT study on the structural, electronic properties and radical scavenging mechanisms of calycosin, glycitein, pratensein and prunetin. Computational and Theoretical Chemistry, 985, 14–22. https://doi.org/10.1016/j.comptc.2012.01.028
  • Shahraki, A., & Ebrahimi, A. (2019). Binding of ellagic acid and urolithin metabolites to the CK2 protein, based on the ONIOM method and molecular docking calculations. New Journal of Chemistry, 43(40), 15983–15998. https://doi.org/10.1039/C9NJ03508G
  • Shi, D., Li, J., Guo, S., Su, H., & Fan, X. (2009). The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo. Chinese Journal of Oceanology and Limnology, 27(2), 277–282. https://doi.org/10.1007/s00343-009-9119-x
  • Shigeyuki, K., Jinno, N., Suzuki, T., Sugihara, K., Ohta, S., Kuroki, H., & Fujimoto, N. (2005). Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. Toxicology, 208, 377.
  • Shulin, Z., Bao, L., Linhananta, A., & Liu, W. (2013). Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. Journal of Molecular Graphics and Modelling, 44, 155.
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367
  • Stapleton, H. M., Eagle, S., Sjödin, A., & Webster, T. F. (2012). Serum PBDEs in a North Carolina toddler cohort: Associations with handwipes, house dust, and socioeconomic variables. Environmental Health Perspectives, 120(7), 1049–1054. https://doi.org/10.1289/ehp.1104802
  • Thangaraj, S. K., Arola, H., Tullila, A., Nevanen, T. K., Rouvinen, J., & Jänis, J. (2019). Quantitation of thyroid hormone binding to anti-thyroxine antibody fab fragment by native mass spectrometry. ACS Omega, 4(20), 18718–18724. https://doi.org/10.1021/acsomega.9b02659
  • Trummal, A., Lipping, L., Kaljurand, I., Koppel, I. A., & Leito, I. (2016). Acidity of strong acids in water and dimethyl sulfoxide. The Journal of Physical Chemistry. A, 120(20), 3663–3669. https://doi.org/10.1021/acs.jpca.6b02253
  • Vanessa, D., Grimaldi, M., Pons, J. L., Boulahtouf, A., Maire, A. L., Cavailles, V., Labesse, G., Bourguet, W., & Balaguer, P. (2012). Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proceedings of the National Academy of Sciences of the United States of America, 109, 14930.
  • Vreven, T., Byun, K. S., Komáromi, I., Dapprich, S., M, J. A., Jr., Morokuma, K., & Frisch, M. J. (2006). Combining quantum mechanics methods with molecular mechanics methods in ONIOM. Journal of Chemical Theory and Computation, 2(3), 815–826. https://doi.org/10.1021/ct050289g
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, W., Okada, Y., Shi, H., Wang, Y., & Okuyama, T. (2005). Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia l atiuscula. Journal of Natural Products, 68(4), 620–622. https://doi.org/10.1021/np040199j
  • Wanyi, Z., Feng, X., Ban, S., Lin, W., & Li, Q. (2010). Synthesis and biological activity of halophenols as potent antioxidant and cytoprotective agents. Bioorganic and Medicinal Chemistry Letters, 20, 4132.
  • Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173–1183. https://doi.org/10.1021/ja002455u
  • Xu, N., Fan, X., Yan, X., Li, X., Niu, R., & Tseng, C. K. (2003). Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry, 62(8), 1221–1224. https://doi.org/10.1016/s0031-9422(03)00004-9
  • Xu, X., Song, F., Wang, S., Li, S., Xiao, F., Zhao, J., Yang, Y., Shang, S., Yang, L., & Shi, J. (2004). Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana. Journal of Natural Products, 67(10), 1661–1666. https://doi.org/10.1021/np0400609
  • Zhong, D., Wang, H., Liu, M., Li, X., Huang, M., Zhou, H., Lin, S., Lin, Z., & Yang, B. (2015). Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress. Scientific Reports, 5, 16910. https://doi.org/10.1038/srep16910

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.