111
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Non-equilibrium molecular dynamics study of human aquaporin-2 in the static external electric fields

&
Pages 10793-10801 | Received 13 Dec 2020, Accepted 26 Jun 2021, Published online: 09 Jul 2021

References

  • Alberga, D., Nicolotti, O., Lattanzi, G., Nicchia, G. P., Frigeri, A., Pisani, F., Benfenati, V., & Mangiatordi, G. F. (2014). A new gating site in human aquaporin-4: Insights from molecular dynamics simulations. Biochimica et Biophysica Acta, 1838(12), 3052–3060. https://doi.org/10.1016/j.bbamem.2014.08.015
  • Berezhkovskii, A., & Hummer, G. (2002). Single-file transport of water molecules through a carbon nanotube. Physical Review Letters, 89(6), 064503. https://doi.org/10.1103/PhysRevLett.89.064503
  • Bernardi, M., Marracino, P., Ghaani, M. R., Liberti, M., Del Signore, F., Burnham, C. J., Gárate, J.-A., Apollonio, F., & English, N. J. (2018). Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: A non-equilibrium molecular-dynamics study. The Journal of Chemical Physics, 149(24), 245102. https://doi.org/10.1063/1.5044665
  • Bernardi, M., Marracino, P., Liberti, M., Gárate, J.-A., Burnham, C. J., Apollonio, F., & English, N. J. (2019). Controlling ionic conductivity through transprotein electropores in human aquaporin 4: A non-equilibrium molecular-dynamics study. Physical Chemistry Chemical Physics, 21(6), 3339–3346. https://doi.org/10.1039/c8cp06643d
  • Binesh, A. R., & Kamali, R. (2015). Molecular dynamics insights into human aquaporin 2 water channel. Biophysical Chemistry, 207, 107–113. https://doi.org/10.1016/j.bpc.2015.10.002
  • Böckmann, R. A., de Groot, B. L., Kakorin, S., Neumann, E., & Grubmüller, H. (2008). Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophysical Journal, 95(4), 1837–1850. https://doi.org/10.1529/biophysj.108.129437
  • de Groot, B. L., & Grubmüller, H. (2001). Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science, 294(5550), 2353–2357. https://doi.org/10.1126/science.1062459
  • English, N. J., & Garate, J.-A. (2016). Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics. The Journal of Chemical Physics, 145(8), 085102. https://doi.org/10.1063/1.4961072
  • English, N. J., & Waldron, C. J. (2015). Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Physical Chemistry Chemical Physics, 17(19), 12407–12440. https://doi.org/10.1039/c5cp00629e
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Feller, S. E., & MacKerell, A. D. (2000). An improved empirical potential energy function for molecular simulations of phospholipids. The Journal of Physical Chemistry B, 104(31), 7510–7515. https://doi.org/10.1021/jp0007843
  • Feller, S. E., Zhang, Y., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103(11), 4613–4621. https://doi.org/10.1063/1.470648
  • Frick, A., Eriksson, U. K., de Mattia, F., Oberg, F., Hedfalk, K., Neutze, R., de Grip, W. J., Deen, P. M. T., & Törnroth-Horsefield, S. (2014). X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6305–6310. https://doi.org/10.1073/pnas.1321406111
  • Garate, J. A., English, N. J., & MacElroy, J. M. (2009). Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes. The Journal of Chemical Physics, 131(11), 114508. https://doi.org/10.1063/1.3227042
  • Garate, J. A., English, N. J., & MacElroy, J. M. (2011). Human aquaporin 4 gating dynamics in dc and ac electric fields: A molecular dynamics study. The Journal of Chemical Physics, 134(5), 055110. https://doi.org/10.1063/1.3529428
  • Grossfield, A., & Zuckerman, D. M. (2009). Quantifying uncertainty and sampling quality in biomolecular simulations. Annual Reports in Computational Chemistry, 5, 23–48. https://doi.org/10.1016/S1574-1400(09)00502-7
  • Hadidi, H., & Kamali, R. (2020). Non-equilibrium molecular dynamics simulations of water transport through plate-and hourglass-shaped CNTs in the presence of pressure difference and electric field. Computational Materials Science, 185, 109978. https://doi.org/10.1016/j.commatsci.2020.109978
  • Hadidi, H., Kamali, R., & Binesh, A. (2020). Dynamics and energetics of water transport through aquaporin mutants causing nephrogenic diabetes insipidus (NDI): A molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 1–12.
  • Hashido, M., Ikeguchi, M., & Kidera, A. (2005). Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF. FEBS Letters, 579(25), 5549–5552. https://doi.org/10.1016/j.febslet.2005.09.018
  • Hub, J. S., Grubmuller, H., & de Groot, B. L. (2009). Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handbook of Experimental Pharmacology, (190), 57–76.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Janosi, L., & Ceccarelli, M. (2013). The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations. PLoS One, 8(4), e59897. https://doi.org/10.1371/journal.pone.0059897
  • Jensen, M., Tajkhorshid, E., & Schulten, K. (2003). Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophysical Journal, 85(5), 2884–2899. https://doi.org/10.1016/S0006-3495(03)74711-0
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • King, L. S., Kozono, D., & Agre, P. (2004). From structure to disease: The evolving tale of aquaporin biology. Nature Reviews. Molecular Cell Biology, 5(9), 687–698. https://doi.org/10.1038/nrm1469
  • Kreida, S., & Törnroth-Horsefield, S. (2015). Structural insights into aquaporin selectivity and regulation. Current Opinion in Structural Biology, 33, 126–134. https://doi.org/10.1016/j.sbi.2015.08.004
  • Lohrasebi, A., & Koslowski, T. (2019). Modeling water purification by an aquaporin-inspired graphene-based nano-channel. Journal of Molecular Modeling, 25(9), 280. https://doi.org/10.1007/s00894-019-4160-y
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Marracino, P. (2016). Human aquaporin 4 gating dynamics under perpendicularly-oriented electric-field impulses: A molecular dynamics study. International Journal of Molecular Sciences, 17(7), 1133–1148.
  • Marracino, P., Bernardi, M., Liberti, M., Del Signore, F., Trapani, E., Gárate, J.-A., Burnham, C. J., Apollonio, F., & English, N. J. (2018). Transprotein-electropore characterization: A molecular dynamics investigation on human AQP4. ACS Omega, 3(11), 15361–15369. https://doi.org/10.1021/acsomega.8b02230
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Mulero, R., Prabhu, A. S., Freedman, K. J., & Kim, M. J. (2010). Nanopore-based devices for bioanalytical applications. Journal of the Association for Laboratory Automation, 15(3), 243–252. https://doi.org/10.1016/j.jala.2010.01.009
  • Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A., & Fujiyoshi, Y. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407(6804), 599–605.
  • Padhi, S., & Priyakumar, U. D. (2017). Microsecond simulation of human aquaporin 2 reveals structural determinants of water permeability and selectivity. Biochimica et Biophysica Acta. Biomembranes, 1859(1), 10–16. https://doi.org/10.1016/j.bbamem.2016.10.011
  • Payne, J. A., & Forbush, B. (1994). Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proceedings of the National Academy of Sciences, 91(10), 4544–4548. https://doi.org/10.1073/pnas.91.10.4544
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Reale, R., English, N. J., Garate, J.-A., Marracino, P., Liberti, M., & Apollonio, F. (2013). Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: A molecular dynamics study of field effects and relaxation. The Journal of Chemical Physics, 139(20), 205101. https://doi.org/10.1063/1.4832383
  • Sasseville, L. J., Cuervo, J. E., Lapointe, J.-Y., & Noskov, S. Y. (2011). The structural pathway for water permeation through sodium-glucose cotransporters. Biophysical Journal, 101(8), 1887–1895. https://doi.org/10.1016/j.bpj.2011.09.019
  • Smart, O. S., Goodfellow, J. M., & Wallace, B. A. (1993). The pore dimensions of gramicidin A. Biophysical Journal, 65(6), 2455–2460. https://doi.org/10.1016/S0006-3495(93)81293-1
  • Su, J., & Guo, H. (2011). Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano, 5(1), 351–359. https://doi.org/10.1021/nn1014616
  • Tajkhorshid, E., Nollert, P., Jensen, M. Ø., Miercke, L. J. W., O'Connell, J., Stroud, R. M., & Schulten, K. (2002). Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science, 296(5567), 525–530. https://doi.org/10.1126/science.1067778
  • Tieleman, D. P. (2004). The molecular basis of electroporation. BMC Biochemistry, 5(1), 10–12. https://doi.org/10.1186/1471-2091-5-10
  • Verkman, A. S. (2012). Aquaporins in clinical medicine. Annual Review of Medicine, 63, 303–316. https://doi.org/10.1146/annurev-med-043010-193843
  • Wan, R., Lu, H., Li, J., Bao, J., Hu, J., & Fang, H. (2009). Concerted orientation induced unidirectional water transport through nanochannels. Physical Chemistry Chemical Physics, 11(42), 9898–9902. https://doi.org/10.1039/b907926m
  • Wang, Y., & Tajkhorshid, E. (2010). Nitric oxide conduction by the brain aquaporin AQP4. Proteins, 78(3), 661–670. https://doi.org/10.1002/prot.22595
  • Yamamoto, E., Akimoto, T., Hirano, Y., Yasui, M., & Yasuoka, K. (2014). 1/f fluctuations of amino acids regulate water transportation in aquaporin 1. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 89(2), 022718. https://doi.org/10.1103/PhysRevE.89.022718
  • Zhu, F., Tajkhorshid, E., & Schulten, K. (2004). Collective diffusion model for water permeation through microscopic channels. Physical Review Letters, 93(22), 224501. https://doi.org/10.1103/PhysRevLett.93.224501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.