214
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Validating the predictions of murburn model for oxygenic photosynthesis: Analyses of ligand-binding to protein complexes and cross-system comparisons

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 11024-11056 | Received 31 May 2021, Accepted 04 Jul 2021, Published online: 30 Jul 2021

References

  • Ahrens, W. H. (1994). Herbicide handbook (7th ed.). Weed Science Society of America.
  • Albertsson, P. Å., Hsu, B. D., Tang, G. M. S., & Arnon, D. I. (1983). Photosynthetic electron transport from water to NADP+ driven by photosystem II in inside-out chloroplast vesicles. Proceedings of the National Academy of Sciences, 80(13), 3971–3975. https://doi.org/10.1073/pnas.80.13.3971
  • Andersson, B. B. J. (1996). Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In N. R. Baker (Eds.), Photosynthesis and the Environment. Advances in photosynthesis and respiration, environment (pp. 101–121; Vol. 5). Springer. https://doi.org/10.1007/0-306-48135-9_4
  • Andrew, D. G., Hager, L. P., & Manoj, K. M. (2011). The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand. Biochemical and Biophysical Research Communications, 415(4), 646–649. https://doi.org/10.1016/j.bbrc.2011.10.128
  • Arita, Y., Harkness, S. H., Kazzaz, J. A., Koo, H-c., Joseph, A., Melendez, J. A., Davis, J. M., Chander, A., & Li, Y. (2006). Mitochondrial localization of catalase provides optimal protection from H2O2-induced cell death in lung epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 290(5), L978–L986. https://doi.org/10.1152/ajplung.00296.2005
  • Arnon, D. I. (1995). Divergent pathways of photosynthetic electron transfer: The autonomous oxygenic and anoxygenic photosystems. Photosynthesis Research, 46(1-2), 47–71. https://doi.org/10.1007/BF00020416.
  • Arnon, D. I., & Barber, J. (1990). Photoreduction of NADP + by isolated reaction centers of photosystem II: Requirement for plastocyanin. Proceedings of the National Academy of Sciences, 87(15), 5930–5934. https://doi.org/10.1073/pnas.87.15.5930
  • Arnon, D. I., Tsujimoto, H. Y., & Tang, G. M. S. (1980). Contrasts between oxygenic and anoxygenic photoreduction of ferredoxin: Incompatibilities with prevailing concepts of photosynthetic electron transport. Proceedings of the National Academy of Sciences of the United States of America, 77(5), 2676–2680. https://doi.org/10.1073/pnas.77.5.2676.
  • Arnon, D. I., Tsujimoto, H. Y., & Tang, G. M. S. (1981). Proton transport in photooxidation of water: A new perspective on photosynthesis. Proceedings of the National Academy of Sciences, 78(5), 2942–2946. https://doi.org/10.1073/pnas.78.5.2942
  • Austin, J. R., & Staehelin, L. A. (2011). Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiology, 155(4), 1601–1611. https://doi.org/10.1104/pp.110.170647
  • Avron, M., & Shavit, N. (1965). Inhibitors and uncouplers of photophosphorylation. Biochimica et Biophysica Acta (BBA) - Biophysics Including Photosynthesis, 109(2), 317–331. https://doi.org/10.1016/0926-6585(65)90160-3
  • Bailleul, B., Johnson, X., Finazzi, G., Barber, J., Rappaport, F., & Telfer, A. (2008). The thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d-dominated cyanobacterium, Acaryochloris marina. The Journal of Biological Chemistry, 283(37), 25218–25226. https://doi.org/10.1074/jbc.M803047200.
  • Barber, J. (1995). Short-circuiting the Z-scheme. Nature, 376(6539), 388–389. https://doi.org/10.1038/376388a0
  • Behe, M. J. (2000). Self-organization and irreducibly complex systems: A reply to Shanks and Joplin. Philosophy of Science, 67(1), 155–162. https://doi.org/10.1086/392766
  • Belatik, A., Joly, D., Hotchandani, S., & Carpentier, R. (2013). Re-evaluation of the side effects of cytochrome b 6 f inhibitor dibromothymoquinone on photosystem II excitation and electron transfer. Photosynthesis Research, 117(1-3), 489–496. https://doi.org/10.1007/s11120-013-9798-1
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007). Chapter 8. In Biochemistry (6th ed.). WH Freeman.
  • Berkowitz, G. A., & Gibbs, M. (1982). Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast : generation and use of reducing power. Plant Physiology, 70(4), 1143–1148. https://doi.org/10.1104/pp.70.4.1143
  • Bettiol, C., De Vettori, S., Minervini, G., Zuccon, E., Marchetto, D., Ghirardini, A. V., & Argese, E. (2016). Assessment of phenolic herbicide toxicity and mode of action by different assays. Environmental Science and Pollution Research International, 23(8), 7398–7408. https://doi.org/10.1007/s11356-015-5958-5
  • Bisewska, J., Sarnowska, E. I., & Tukaj, Z. H. (2012). Phytotoxicity and antioxidative enzymes of green microalga (Desmodesmus subspicatus) and duckweed (Lemna minor) exposed to herbicides MCPA, chloridazon and their mixtures. Journal of Environmental Science and Health, Part B, 47(8), 814–822. https://doi.org/10.1080/03601234.2012.676443
  • Bowyer, J., Hilton, M., Whitelegge, J., Jewess, P., Camilleri, P., Crofts, A., & Robinson, H. (1990). Molecular modelling studies on the binding of phenylurea inhibitors to the D 1 protein of photosystem II. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 45(5), 379–387. https://doi.org/10.1515/znc-1990-0512.
  • Brand, J., Baszynski, T., Crane, F. L., & Krogmann, D. W. (1972). Selective inhibition of photosynthetic reactions by polycations. Journal of Biological Chemistry, 247(9), 2814–2819. https://doi.org/10.1016/S0021-9258(19)45283-6
  • Calzadilla, P. I., Zhan, J., Sétif, P., Lemaire, C., Solymosi, D., Battchikova, N., Wang, Q., & Kirilovsky, D. (2019). The cytochrome b6f complex is not involved in cyanobacterial state transitions. The Plant Cell, 31(4), 911–931. https://doi.org/10.1105/tpc.18.00916
  • Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2005). Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy, 2(1), 1–293. https://doi.org/10.1016/S1572-1000(05)00007-4.
  • Chang, S.-Y., Lee, M. Y., Chung, P.-S., Kim, S., Choi, B., Suh, M.-W., Rhee, C.-K., & Jung, J. Y. (2019). Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-55711-9
  • Cramer, W. A., Zhang, H., Yan, J., Kurisu, G., & Smith, J. L. (2006). Transmembrane traffic in the cytochrome b6f complex. Annual Review of Biochemistry, 75, 769–790. https://doi.org/10.1146/annurev.biochem.75.103004.142756
  • da Silva Simões, M., Bracht, L., Parizotto, A. V., Comar, J. F., Peralta, R. M., & Bracht, A. (2017). The metabolic effects of diuron in the rat liver. Environmental Toxicology and Pharmacology, 54, 53–61. https://doi.org/10.1016/j.etap.2017.06.024.
  • De Causmaecker, S., Douglass, J. S., Fantuzzi, A., Nitschke, W., & Rutherford, A. W. (2019). Energetics of the exchangeable quinone, QB, in Photosystem II. Proceedings of the National Academy of Sciences, 116(39), 19458–19463.
  • de Freitas, L. F., & Hamblin, M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 348–364. https://doi.org/10.1109/JSTQE.2016.2561201
  • Devine, M., Duke, S. O., & Fedtke, C. (1992). Physiology of herbicide action. PTR Prentice Hall.
  • Dostatni, R., Masson, K., & Oettmeier, W. (1987). Covalent binding of halogen substituted 1, 4-quinones to proteins of the thylakoid membrane. In Progress in photosynthesis research (pp. 421–424). Springer.
  • Dudekula, S., & Fragata, M. (2006). Investigation of the electron transfer site of p-benzoquinone in isolated Photosystem II particles and thylakoid membranes using alpha- and beta-cyclodextrins . Journal of Photochemistry and Photobiology. B, Biology, 85(3), 177–183. https://doi.org/10.1016/j.jphotobiol.2006.07.003.
  • Ellsworth, M. L., Graham, M. R., & Achilleus, D. (2006). Reactive oxygen species and erythrocyte‐released ATP: Is there a connection. FASEB Journal, 20(4), A273–A273. https://doi.org/10.1096/fasebj.20.4.A273-b.
  • Escher, B. I., Hunziker, R., Schwarzenbach, R. P., & Westall, J. C. (1999). Kinetic model to describe the intrinsic uncoupling activity of substituted phenols in energy transducing membranes. Environmental Science & Technology, 33(4), 560–570. https://doi.org/10.1021/es980545h
  • Farivar, S., Malekshahabi, T., & Shiari, R. (2014). Biological effects of low level laser therapy. Journal of Lasers in Medical Sciences, 5(2), 58–62. DOI:
  • Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Scholze, M., Vighi, M., & Grimme, L. H. (2001). Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquatic Toxicology (Amsterdam, Netherlands), 56(1), 13–32. https://doi.org/10.1016/S0166-445X(01)00187-4.
  • Fernández-Velasco, J. G., Jamshidi, A., Gong, X. S., Zhou, J., & Ueng, R. Y. (2001). Photosynthetic electron transfer through the cytochrome B 6 f complex can bypass cytochrome F. The Journal of Biological Chemistry, 276(33), 30598–30607. https://doi.org/10.1074/jbc.M102241200.
  • Forbush, B., Kok, B., & McGloin, M. P. (1971). Cooperation of charges in photosynthetic O2 evolution‐II. damping of flash yield oscillation, deactivation. Photochemistry and Photobiology, 14(3), 307–321. https://doi.org/10.1111/j.1751-1097.1971.tb06175.x
  • Fuerst, E. P., & Norman, M. A. (1991). Interactions of herbicides with photosynthetic electron transport. Weed Science, 39(3), 458–464. https://doi.org/10.1017/S0043174500073227
  • Gade, S. K., Bhattacharya, S., & Manoj, K. M. (2012). Redox active molecules cytochrome C and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochemical and Biophysical Research Communications, 419(2), 211–214. https://doi.org/10.1016/j.bbrc.2012.01.149.
  • Gardeström, P., & Wigge, B. (1988). Influence of photorespiration on ATP/ADP ratios in the chloroplasts, mitochondria, and cytosol, studied by rapid fractionation of barley (Hordeum vulgare) protoplasts. Plant Physiology, 88(1), 69–76. https://doi.org/10.1104/pp.88.1.69
  • Geisler, J. G. (2019). 2, 4 dinitrophenol as medicine. Cells, 8(3), 280. https://doi.org/10.3390/cells8030280
  • Giardi, M. T., Rigoni, F., & Barbato, R. (1992). Photosystem II core phosphorylation heterogeneity, differential herbicide binding, and regulation of electron transfer in photosystem II preparations from spinach. Plant Physiology, 100(4), 1948–1954. https://doi.org/10.1104/pp.100.4.1948
  • Gideon, D. A., Jacob, V. D., & Manoj, K. M. (2019). 2020: Murburn concept heralds a new era in cellular bioenergetics. Biomedical Reviews, 30(0), 89–98. https://doi.org/10.14748/bmr.v30.6390
  • Gideon, D. A., Kumari, R., Lynn, A. M., & Manoj, K. M. (2012). What is the functional role of N-terminal transmembrane helices in the metabolism mediated by liver microsomal cytochrome P450 and its reductase? Cell Biochemistry and Biophysics, 63(1), 35–45. https://doi.org/10.1007/s12013-012-9339-0
  • Gideon, D. A., Nirusimhan, V., & Manoj, K. M. (2020). Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. Journal of Biomolecular Structure and Dynamics, 38, 1–15. https://doi.org/10.1080/07391102.2020.1835715
  • Graan, T., & Ort, D. R. (1986). Quantitation of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone binding sites in chloroplast membranes: evidence for a functional dimer of the cytochrome b6f complex. Archives of Biochemistry and Biophysics, 248(2), 445–451. https://doi.org/10.1016/0003-9861(86)90497-2.
  • Gramatica, P., Vighi, M., Consolaro, F., Todeschini, R., Finizio, A., & Faust, M. (2001). QSAR approach for the selection of congeneric compounds with a similar toxicological mode of action. Chemosphere, 42(8), 873–883. https://doi.org/10.1016/S0045-6535(00)00180-6.
  • Gressel, J. (1992). The needs for new herbicide-resistant crops. In Resistance’91: Achievements and developments in combating pesticide resistance (pp. 283–294). Springer.
  • Hager, L. P. (2010). A lifetime of playing with enzymes. The Journal of Biological Chemistry, 285(20), 14852–14860. https://doi.org/10.1074/jbc.X110.121905.
  • Hasan, S. S., Yamashita, E., Baniulis, D., & Cramer, W. A. (2013). Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4297–4302. https://doi.org/10.1073/pnas.1222248110.
  • Hauska, G. (1977). Artificial acceptors and donors. In A. M. Trebst (Ed.), Photosynthesis I. Encyclopedia of plant physiology (new series) (pp. 253–265) Springer.
  • Heidler, T., Hartwig, K., Daniel, H., & Wenzel, U. (2010). Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology, 11(2), 183–195. https://doi.org/10.1007/s10522-009-9239-x.
  • Heinze, M., & Gerhardt, B. (2002). Plant catalases. In Plant peroxisomes (pp. 103–140). Springer.
  • Holfgrefe, S., Backhausen, J. E., Kitzmann, C., & Scheibe, R. (1997). Regulation of steady-state photosynthesis in isolated intact chloroplasts under constant light: Responses of carbon fluxes, metabolite pools and enzyme-activation states to changes of electron pressure. Plant and Cell Physiology, 38(11), 1207–1216. https://doi.org/10.1093/oxfordjournals.pcp.a029107
  • Horke, D. A., & Verlet, J. R. (2011). Time-resolved photoelectron imaging of the chloranil radical anion: Ultrafast relaxation of electronically excited electron acceptor states. Physical Chemistry Chemical Physics: PCCP, 13(43), 19546–19552. https://doi.org/10.1039/C1CP22237F.
  • Hu, F., Tao, L., Ye, H., Li, X., & Chen, X. (2019). ZnO/WSe 2 vdW heterostructure for photocatalytic water splitting. Journal of Materials Chemistry C, 7(23), 7104–7113. https://doi.org/10.1039/C9TC00573K
  • Husu, I., Magyar, M., Szabó, T., Fiser, B., Gómez-Bengoa, E., & Nagy, L. (2015). Structure and binding efficiency relations of QB site inhibitors of photosynthetic reaction centres. General Physiology and Biophysics, 34(2), 119–133. https://doi.org/10.4149/gpb_2015003
  • Ikezawa, N., Ifuku, K., Endo, T., & Sato, F. (2002). Inhibition of photosystem II of spinach by the respiration inhibitors piericidin A and thenoyltrifluoroacetone. Bioscience, Biotechnology, and Biochemistry, 66(9), 1925–1929. https://doi.org/10.1271/bbb.66.1925.
  • Ishikita, H., & Knapp, E. W. (2005). Control of quinone redox potentials in photosystem II: Electron transfer and photoprotection. Journal of the American Chemical Society, 127(42), 14714–14720. https://doi.org/10.1021/ja052567r
  • Ito-Inaba, Y. (2014). Thermogenesis in skunk cabbage (Symplocarpus renifolius): New insights from the ultrastructure and gene expression profiles. Advances in Horticultural Science, 28, 73–78.
  • Jacob, V. D., & Manoj, K. M. (2019). Are adipocytes and ROS villains, or are they protagonists in the drama of life? The murburn perspective. Adipobiology, 10, 7–16. https://doi.org/10.14748/adipo.v10.6534
  • Janpen, C., Kanthawang, N., Inkham, C., Tsan, F. Y., & Sommano, S. R. (2019). Physiological responses of hydroponically-grown Japanese mint under nutrient deficiency. PeerJ, 7, e7751. https://doi.org/10.7717/peerj.7751 eCollection 2019.
  • Jansen, M. A. K., Mattoo, A. K., Malkin, S., & Edelman, M. (1993). Direct demonstration of binding-site competition between photosystem II inhibitors at the QB niche of the D1 protein. Pesticide Biochemistry and Physiology, 46(1), 78–83. https://doi.org/10.1006/pest.1993.1039
  • Järvi, S., Suorsa, M., Paakkarinen, V., & Aro, E. M. (2011). Optimized native gel systems for separation of thylakoid protein complexes: Novel super-and mega-complexes. Biochemical Journal, 439(2), 207–214. https://doi.org/10.1042/BJ20102155
  • Jegerschoeld, C., Virgin, I., & Styring, S. (1990). Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry, 29(26), 6179–6186. https://doi.org/10.1021/bi00478a010
  • Juneau, P., Qiu, B., & Deblois, C. P. (2007). Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect. Toxicological & Environmental Chemistry, 89(4), 609–625. https://doi.org/10.1080/02772240701561569
  • Kale, R., Hebert, A. E., Frankel, L. K., Sallans, L., Bricker, T. M., & Pospíšil, P. (2017). Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proceedings of the National Academy of Sciences, 114(11), 2988–2993. https://doi.org/10.1073/pnas.1618922114
  • Kaminskaya, O., Shuvalov, V. A., & Renger, G. (2007). Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559. Biochemistry, 46(4), 1091–1105. https://doi.org/10.1021/bi0613022.
  • Kozuleva, M. A., Petrova, A. A., Mamedov, M. D., Semenov, A. Y., & Ivanov, B. N. (2014). O2 reduction by photosystem I involves phylloquinone under steady-state illumination. FEBS Lett, 588(23), 4364–4368. https://doi.org/10.1016/j.febslet.2014.10.003.
  • Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. Journal of Experimental Botany, 56(411), 337–346. https://doi.org/10.1093/jxb/erh237.
  • Kumar, K. S., Choo, K. S., Yea, S. S., Seo, Y., & Han, T. (2010). Effects of the phenylurea herbicide diuron on the physiology ofSaccharina japonica aresch. Toxicology and Environmental Health Sciences, 2(3), 188–199. https://doi.org/10.1007/BF03216505
  • Kurisu, G., Zhang, H., Smith, J. L., & Cramer, W. A. (2003). Structure of the cytochrome b6f complex of oxygenic photosynthesis: Tuning the cavity. Science (New York, N.Y.), 302(5647), 1009–1014. https://doi.org/10.1126/science.1090165
  • Lambreva, M. D., Russo, D., Polticelli, F., Scognamiglio, V., Antonacci, A., Zobnina, V., Campi, G., & Rea, G. (2014). Structure/function/dynamics of photosystem II plastoquinone binding sites. Current Protein & Peptide Science, 15(4), 285–295. https://doi.org/10.2174/1389203715666140327104802
  • Leslie, M. (2009). Origins. On the origin of photosynthesis. Science, 323, 1286–1287. https://doi.org/10.1126/science.323.5919.1286
  • Longatte, G., Rappaport, F., Wollman, F. A., Guille-Collignon, M., & Lemaître, F. (2017). Electrochemical harvesting of photosynthetic electrons from unicellular algae population at the preparative scale by using 2, 6-dichlorobenzoquinone. Electrochimica Acta, 236, 337–342. https://doi.org/10.1016/j.electacta.2017.03.124
  • Ma, J., Wang, S., Wang, P., Ma, L., Chen, X., & Xu, R. (2006). Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata. Ecotoxicology and Environmental Safety, 63(3), 456–462. https://doi.org/10.1016/j.ecoenv.2004.12.001
  • Madhavi, D. R., Umamaheswari, A., & Venkateswarlu, K. (1995). Effective concentrations of nitrophenolics toward growth yield of selected microalgae and cyanobacteria isolated from soil. Ecotoxicology and Environmental Safety, 32(3), 205–208. https://doi.org/10.1006/eesa.1995.1104
  • Mailer, K. (1990). Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochemical and Biophysical Research Communications, 170(1), 59–64. https://doi.org/10.1016/0006-291X(90)91240-S
  • Malaspina, I. C., Cruz, C., Garlich, N., Bianco, S., & Pitelli, R. A. (2017). Effectiveness of diquat, both isolated and associated with copper sources in controlling the Hydrilla verticillata submerged macrophytes and ankistrodesmus gracilis microphyte. Planta Daninha, 35, 1–8. https://doi.org/10.1590/S0100-83582017350100018.
  • Manoj, K. M., Gideon, D. A., Jacob, V. D., & Manekkathodi, A. (2020b). Is Z-scheme a tenable explanation for the light reaction of oxygenic photosynthesis? OSF Preprints. https://doi.org/10.1590/S0100-83582017350100018
  • Manoj, K. M., Gideon, D. A., & Parashar, A. (2020c). Refuting the ideas advocated by Yuly et al. (P NAS, Sep. 2020): ‘Universal free energy landscapes’ and ‘deterministic electron-relay circuitry’ are unsustainable within membraneembedded cytochrome b protein complexes involved in bioenergetic routines. OSF Preprints. https://doi.org/10.31219/osf.io/4vmct
  • Manoj, K. M., Gideon, D. A., & Parashar, A. (2021). What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective. Cell Biochemistry and Biophysics, 79(1), 3–10. https://doi.org/10.1007/s12013-020-00945-y
  • Manoj, K. M., Ramasamy, S., Parashar, A., Gideon, D. A., Soman, V., Jacob, V. D., & Pakshirajan, K. (2020a).Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomolecular Concepts, 11(1), 32–56. https://doi.org/10.1515/bmc-2020-0004
  • Manoj, K. M., & Tamagawa, H. (2020). Revisiting the mechanisms for cellular homeostasis and electrophysiological responses: Classical membrane theory, association-induction hypothesis and murburn concept. OSF Preprints. https://doi.org/10.31219/osf.io/e2ynk
  • Manoj, K. M. (2020). Murburn concept: A paradigm shift in cellular metabolism and physiology. Biomolecular Concepts, 11(1), 7–22. https://doi.org/10.1515/bmc-2020-0002
  • Manoj, K. M., & Manekkathodi, A. (2021). Light's interaction with pigments in chloroplasts: The murburn perspective. Journal of Photochemistry and Photobiology, 5, 100015. https://doi.org/10.1016/j.jpap.2020.100015
  • Manoj, K. M. (2006). Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate (s) and the reaction components play multiple roles in the overall process. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764(8), 1325–1339. https://doi.org/10.1016/j.bbapap.2006.05.012.
  • Manoj, K. M. (2018a). Aerobic Respiration: Criticism of the proton-centric explanation involving rotary adenosine triphosphate synthesis, chemiosmosis principle, proton pumps and electron transport chain. Biochemistry Insights, 11, 1178626418818442. https://doi.org/10.1177/1178626418818442.
  • Manoj, K. M. (2018b). Debunking chemiosmosis and proposing murburn concept as the operative principle for cellular respiration. Biomedical Reviews, 28, 31–48. https://doi.org/10.14748/bmr.v28.4450
  • Manoj, K. M. (2018c). The ubiquitous biochemical logic of murburn concept. Biomedical Reviews, 29, 89–97. https://doi.org/10.14748/bmr.v29.5854
  • Manoj, K. M. (2019). Torday’s prognosis for aging and mortality: More evolution and better life!. Biomedical Reviews, 30, 23–24. https://doi.org/10.14748/bmr.v30.6384
  • Manoj, K. M., Baburaj, A., Ephraim, B., Pappachan, F., Maviliparambathu, P. P., Vijayan, U. K., Narayanan, S. V., Periasamy, K., George, E. A., & Mathew, L. T. (2010a). Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PloS One, 5(5), e10601. https://doi.org/10.1371/journal.pone.0010601.
  • Manoj, K. M., & Bazhin, N. M. (2021). Murburn precepts for aerobic respiration and homeostasis. Progress in Biophysics and Molecular Biology, https://doi.org/10.1016/j.pbiomolbio.2021.05.010
  • Manoj, K. M., Gade, S. K., & Mathew, L. (2010b). Cytochrome P450 reductase: A harbinger of diffusible reduced oxygen species. PloS One, 5(10), e13272. https://doi.org/10.1371/journal.pone.0013272
  • Manoj, K. M., Gade, S. K., Venkatachalam, A., & Gideon, D. A. (2016a). Electron transfer amongst flavo-and hemo-proteins: Diffusible species effect the relay processes, not protein–protein binding. RSC Advances, 6(29), 24121–24129. https://doi.org/10.1039/C5RA26122H
  • Manoj, K. M., Gideon, D. A., & Jacob, V. D. (2018). Murburn scheme for mitochondrial thermogenesis. Biomedical Reviews, 29, 73–82. https://doi.org/10.14748/bmr.v29.5852
  • Manoj, K. M., & Hager, L. P. (2001). Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1547(2), 408–417. https://doi.org/10.1016/S0167-4838(01)00210-2
  • Manoj, K. M., & Hager, L. P. (2006). A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. Analytical Biochemistry, 348(1), 84–86. https://doi.org/10.1016/j.ab.2005.10.014.
  • Manoj, K. M., & Hager, L. P. (2008). Chloroperoxidase, a janus enzyme. Biochemistry, 47(9), 2997–3003. https://doi.org/10.1021/bi7022656.
  • Manoj, K. M., & Jacob, V. D. (2020). The murburn precepts for photoreception. https://doi.org/10.31219/osf.io/gmd5t.
  • Manoj, K. M., Parashar, A., David Jacob, V., & Ramasamy, S. (2019a). Aerobic respiration: Proof of concept for the oxygen-centric murburn perspective. Journal of Biomolecular Structure & Dynamics, 37(17), 4542–4556. https://doi.org/10.1080/07391102.2018.1552896
  • Manoj, K. M., Parashar, A., Gade, S. K., & Venkatachalam, A. (2016c). Functioning of microsomal cytochrome P450s: Murburn concept explains the metabolism of xenobiotics in hepatocytes. Frontiers in Pharmacology, 7, 161. https://doi.org/10.3389/fphar.2016.00161.
  • Manoj, K. M., Parashar, A., Venkatachalam, A., Goyal, S., Singh, P. G., Gade, S. K., & Gideon, D. A. (2016b). Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions. Biochimie, 125, 91–111. https://doi.org/10.1016/j.biochi.2016.03.003.
  • Manoj, K. M., & Soman, V. (2020). Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: A personal perspective. Toxicology, 432, 152369. https://doi.org/10.1016/j.tox.2020.152369
  • Manoj, K. M., Soman, V., David Jacob, V., Parashar, A., Gideon, D. A., Kumar, M., Manekkathodi, A., Ramasamy, S., Pakshirajan, K., & Bazhin, N. M. (2019b). Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Archives of Biochemistry and Biophysics, 676, 108128. https://doi.org/10.1016/j.abb.2019.108128.
  • Manoj, K. M., Venkatachalam, A., & Parashar, A. (2016d). Metabolism of xenobiotics by cytochrome P450: Novel insights into the thermodynamics, kinetics and roles of redox proteins and diffusible reactive species. In Drug metabolism reviews (Vol. 48, pp. 41–42). Taylor & Francis Ltd.
  • Manoj, K. M., Yi, X., Rai, G. P., & Hager, L. P. (1999). A kinetic epoxidation assay for chloroperoxidase. Biochemical and Biophysical Research Communications, 266(2), 301–303. https://doi.org/10.1006/bbrc.1999.1810.
  • Manonmani, G., Sandhiya, L., & Senthilkumar, K. (2020). Mechanism and kinetics of diuron oxidation by hydroxyl radical addition reaction. Environmental Science and Pollution Research International, 27(11), 12080–12095. https://doi.org/10.1007/s11356-020-07806-4
  • Michel, A., Johnson, R. D., Duke, S. O., & Scheffler, B. E. (2004). Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: an improved ecotoxicological method. Environmental Toxicology and Chemistry, 23(4), 1074–1079. https://doi.org/10.1897/03-256
  • Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11–19. https://doi.org/10.1016/j.tplants.2016.08.002
  • Morris, G. M., Goodsell, D. S., Huey, R., Hart, W. E., Halliday, S., Belew, R., & Olson, A. J. (2001). AutoDock. Automated docking of flexible ligands to receptor-User Guide.
  • Müh, F., & Zouni, A. (2016). Cytochrome b559 in photosystem II. In Cytochrome complexes: Evolution, structures, energy transduction, and signaling (pp. 143–175). Springer.
  • Nakajima, Y., Yoshida, S., Inoue, Y., Yoneyama, K., & Ono, T. A. (1995). Selective and specific degradation of the D 1 protein induced by binding of a novel Photosystem II inhibitor to the QB site. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1230(1-2), 38–44. https://doi.org/10.1016/0005-2728(95)00030-M
  • Nakajima, Y., Yoshida, S., & Ono, T. A. (1996). Differential effects of urea/triazine-type and phenol-type photosystem II inhibitors on inactivation of the electron transport and degradation of the D1 protein during photoinhibition. Plant and Cell Physiology, 37(5), 673–680. https://doi.org/10.1093/oxfordjournals.pcp.a028997
  • Netzer-El, S. Y., Caspy, I., & Nelson, N. (2018). Crystal structure of photosystem I monomer from Synechocystis PCC 6803. Frontiers in Plant Science, 9, 1865. https://doi.org/10.3389/fpls.2018.01865
  • Nicholls, D. G. (2004). Mitochondrial membrane potential and aging. Aging Cell, 3(1), 35–40. https://doi.org/10.1111/j.1474-9728.2003.00079.x
  • Nirusimhan, V., Gideon, D. A., & Manoj, K. M. (2021). Structural basis for the inhibition of photosynthesis: A murburn perspective. OSF Preprints. https://doi.org/10.31219/osf.io/dntp8
  • Nixon, P. J., Komenda, J., Barber, J., Deak, Z., Vass, I., & Diner, B. A. (1995). Deletion of the PEST-like region of photosystem two modifies the QB-binding pocket but does not prevent rapid turnover of D1. The Journal of Biological Chemistry, 270(25), 14919–14927. https://doi.org/10.1074/jbc.270.25.14919
  • Niyogi, K. K., Björkman, O., & Grossman, A. R. (1997). The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences, 94(25), 14162–14167. https://doi.org/10.1073/pnas.94.25.14162
  • Oettmeier, W., Masson, K., & Johanningmeier, U. (1980). Photoaffinity labelling of the photosystem II herbicide binding protein. FEBS Letters, 118(2), 267–270. https://doi.org/10.1016/0014-5793(80)80235-3
  • Oettmeier, W., & Masson, K. (1980). Synthesis and thylakoid membrane binding of the radioactively labeled herbicide dinoseb. Pesticide Biochemistry and Physiology, 14(1), 86–97. https://doi.org/10.1016/0048-3575(80)90026-7
  • Oettmeier, W., Masson, K., & Dostatni, R. (1987). Halogenated 1, 4-benzoquinones as irreversibly binding inhibitors of photosynthetic electron transport. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 890(2), 260–269. https://doi.org/10.1016/0005-2728(87)90027-2
  • Oettmeier, W., Reimer, S., & Link, K. (1978). Quantitative structure-activity relationship of substituted benzoquinones as inhibitors of photosynthetic electron transport. Zeitschrift für Naturforschung C, 33(9-10), 695–703. https://doi.org/10.1515/znc-1978-9-1016
  • Pan, X., Cao, D., Xie, F., Xu, F., Su, X., Mi, H., Zhang, X., & Li, M. (2020). Structural basis for electron transport mechanism of complex I-like photosynthetic NAD (P) H dehydrogenase. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-14456-0
  • Pan, X., Ma, J., Su, X., Cao, P., Chang, W., Liu, Z., Zhang, X., & Li, M. (2018). Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science (New York, NY), 360(6393), 1109–1113. https://doi.org/10.1126/science.aat1156
  • Parashar, A., Gade, S. K., Potnuru, M., Madhavan, N., & Manoj, K. M. (2014a). The curious case of benzbromarone: Insight into super-inhibition of cytochrome P450. PLoS One, 9(3), e89967. https://doi.org/10.1371/journal.pone.0089967
  • Parashar, A., Gideon, D. A., & Manoj, K. M. (2018). Murburn concept: A molecular explanation for hormetic and idiosyncratic dose responses. Dose-Response: A Publication of International Hormesis Society, 16(2), 1559325818774421. https://doi.org/10.1177/1559325818774421
  • Parashar, A., Jacob, V. D., Gideon, D. A., & Manoj, K. M. (2021). Hemoglobin catalyzes ATP-synthesis in human erythrocytes: A murburn model. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2021.1925592
  • Parashar, A., & Manoj, K. M. (2012). Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochemical and Biophysical Research Communications, 417(3), 1041–1045. https://doi.org/10.1016/j.bbrc.2011.12.090
  • Parashar, A., & Manoj, K. M. (2021). Murburn precepts for cytochrome P450 mediated drug/xenobiotic metabolism and homeostasis. Current Drug Metabolism, 22(4), 315–326. https://doi.org/10.2174/1389200222666210118102230
  • Parashar, A., Venkatachalam, A., Gideon, D. A., & Manoj, K. M. (2014b). Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochemical and Biophysical Research Communications, 455(3-4), 190–193. https://doi.org/10.1016/j.bbrc.2014.10.137
  • Park, J., Brown, M. T., Depuydt, S., Kim, J. K., Won, D. S., & Han, T. (2017). Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides. Environmental Pollution, 220, 818–827. https://doi.org/10.1016/j.envpol.2016.10.064
  • Partensky, F., Hess, W. R., & Vaulot, D. (1999). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews: MMBR, 63(1), 106–127. https://doi.org/10.1128/MMBR.63.1.106-127.1999
  • Peck, C. C. M., & Chief, B. VI. E. R. (2019). Ecological Risk Assessment for the Registration Review of Terbacil.
  • Pemmaraju, D., Appidi, T., Minhas, G., Singh, S. P., Khan, N., Pal, M., Srivastava, R., & Rengan, A. K. (2018). Chlorophyll rich biomolecular fraction of A. cadamba loaded into polymeric nanosystem coupled with Photothermal Therapy: A synergistic approach for cancer theranostics. International Journal of Biological Macromolecules, 110, 383–391. https://doi.org/10.1016/j.ijbiomac.2017.09.084
  • Pesaresi, P., Scharfenberg, M., Weigel, M., Granlund, I., Schröder, W. P., Finazzi, G., Rappaport, F., Masiero, S., Furini, A., Jahns, P., & Leister, D. (2009). Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: Revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Molecular Plant, 2(2), 236–248. https://doi.org/10.1093/mp/ssn041
  • Peterson, H. (1997). Toxicity of hexazinone and diquat to green algae, diatoms, cyanobacteria and duckweed. Aquatic Toxicology, 39(2), 111–134. https://doi.org/10.1016/S0166-445X(97)00022-2
  • Pospisil, P. (2016). Production of reactive oxygen species by Photosystem II as a response to light and temperature stress. Frontiers in Plant Science, 7, 1950.
  • Prasad, T. K., Anderson, M. D., & Stewart, C. R. (1995). Localization and characterization of peroxidases in the mitochondria of chilling-acclimated maize seedlings. Plant Physiology, 108(4), 1597–1605. https://doi.org/10.1104/pp.108.4.1597
  • Qian, H., Chen, W., Sun, L., Jin, Y., Liu, W., & Fu, Z. (2009). Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. Ecotoxicology (London, England), 18(5), 537–543. https://doi.org/10.1007/s10646-009-0311-8
  • Roberts, A. G., Bowman, M. K., & Kramer, D. M. (2004). The inhibitor DBMIB provides insight into the functional architecture of the Qo site in the cytochrome b6f complex. Biochemistry, 43(24), 7707–7716. https://doi.org/10.1021/bi049521f
  • Ross, M., & Lembi, C. (1999). Applied weed science. Prentice Hall.
  • Ruban, A. V., Phillip, D., Young, A. J., & Horton, P. (1998). Excited‐state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in the isolated light‐harvesting complex of photosystem II. Photochemistry and Photobiology, 68 (6), 829–834. https://doi.org/10.1111/j.1751-1097.1998.tb05291.x
  • Rutherford, A. W., & Krieger-Liszkay, A. (2001). Herbicide-induced oxidative stress in photosystem II. Trends in Biochemical Sciences, 26(11), 648–653. https://doi.org/10.1016/s0968-0004(01)01953-3
  • Saini, G. S. S., Kaur, S., Tripathi, S. K., Dogra, S. D., Abbas, J. M., & Mahajan, C. G. (2011). Vibrational spectroscopic and density functional theory studies of chloranil–imidazole interaction. Vibrational Spectroscopy, 56(1), 66–73. https://doi.org/10.1016/j.vibspec.2010.10.004
  • Sangar, M. C., Bansal, S., & Avadhani, N. G. (2010). Bimodal targeting of microsomal cytochrome P450s to mitochondria: Implications in drug metabolism and toxicity. Expert Opinion on Drug Metabolism & Toxicology, 6(10), 1231–1251. https://doi.org/10.1517/17425255.2010.503955
  • Schulz, T. J., Zarse, K., Voigt, A., Urban, N., Birringer, M., & Ristow, M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metabolism, 6(4), 280–293. https://doi.org/10.1016/j.cmet.2007.08.011
  • Snel, J. E. H., & van Rensen, J. J. S. (1983). Kinetics of the reactivation of the Hill reaction in CO2‐depleted chloroplasts by addition of bicarbonate in the absence and in the presence of herbicides. Physiologia Plantarum, 57(4), 422–427. https://doi.org/10.1111/j.1399-3054.1983.tb02763.x
  • Snel, J. F., Vos, J. H., Gylstra, R., & Brock, T. C. (1998). Inhibition of photosystem II (PSII) electron transport as a convenient endpoint to assess stress of the herbicide linuron on freshwater plants. Aquatic Ecology, 32(2), 113–123. https://doi.org/10.1023/A:1009971930626
  • Sommer, A. P. (2019). Mitochondrial cytochrome c oxidase is not the primary acceptor for near infrared light—it is mitochondrial bound water: The principles of low-level light therapy. Annals of Translational Medicine, 7(S1), S13–S13. https://doi.org/10.21037/atm.2019.01.43
  • Sommer, A. P., Mester, A. R., & Trelles, M. A. (2015). Tuning the mitochondrial rotary motor with light. Annals of Translational Medicine, 3(22), 346.
  • Srivastava, A., & Strasser, R. J. (1995). Differential effects of dimethylbenzoquinone and dichlorobenzoquinone on chlorophyll fluorescence transient in spinach thylakoids. Journal of Photochemistry and Photobiology B: Biology, 31(3), 163–169.
  • Su, X., Ma, J., Wei, X., Cao, P., Zhu, D., Chang, W., Liu, Z., Zhang, X., & Li, M. (2017). Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science (New York, N.Y.), 357(6353), 815–820. https://doi.org/10.1126/science.aan0327
  • Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., Shimizu, T., Yamashita, K., Yamamoto, M., Ago, H., & Shen, J.-R. (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature, 517(7532), 99–103. https://doi.org/10.1038/nature13991
  • Suga, M., Akita, F., Yamashita, K., Nakajima, Y., Ueno, G., Li, H., Yamane, T., Hirata, K., Umena, Y., Yonekura, S., Yu, L.-J., Murakami, H., Nomura, T., Kimura, T., Kubo, M., Baba, S., Kumasaka, T., Tono, K., Yabashi, M., … Shen, J.-R. (2019). An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science (New York, N.Y.), 366(6463), 334–338. https://doi.org/10.1126/science.aax6998
  • Sweetlove, L. J., Lytovchenko, A., Morgan, M., Nunes-Nesi, A., Taylor, N. L., Baxter, C. J., Eickmeier, I., & Fernie, A. R. (2006). Mitochondrial uncoupling protein is required for efficient photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19587–19592. https://doi.org/10.1073/pnas.0607751103
  • Takahashi, N., Ito, M., Mikami, N., Matsuda, T., & Miyamoto, J. (1988). Identification of reactive oxygen species generated by irradiation of aqueous humic acid solution. Journal of Pesticide Science, 13(3), 429–435. https://doi.org/10.1584/jpestics.13.429
  • Tardivo, J. P., Del Giglio, A., de Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., de Fátima Turchiello, R., & Baptista, M. S. (2005). Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2(3), 175–191. https://doi.org/10.1016/S1572-1000(05)00097-9
  • Traoré, H., Crouzet, O., Mamy, L., Sireyjol, C., Rossard, V., Servien, R., Latrille, E., Martin-Laurent, F., Patureau, D., & Benoit, P. (2018). Clustering pesticides according to their molecular properties, fate, and effects by considering additional ecotoxicological parameters in the TyPol method. Environmental Science and Pollution Research International, 25(5), 4728–4738. https://doi.org/10.1007/s11356-017-0758-8
  • Trebst, A., Reimer, S., Draber, W., & Knops, H. J. (1979). The effect of analogues of dibromothymoquinone and of bromonitrothymol on photosynthetic electron flow. Zeitschrift Für Naturforschung C, 34(9-10), 831–840. https://doi.org/10.1515/znc-1979-9-1029
  • Tschörtner, J., Lai, B., & Krömer, J. O. (2019). Biophotovoltaics: Green power generation from sunlight and water. Frontiers in microbiology, 10, 866.
  • Tsubone, T. M., Zhang, Z., Goyal, R., Santacruz, C., Martins, W. K., Kohn, J., & Baptista, M. S. (2020). Porphyrin-loaded tyrospheres for the intracellular delivery of drugs and photoinduced oxidant species. Molecular Pharmaceutics, 17(8), 2911–2924. https://doi.org/10.1021/acs.molpharmaceut.0c00338
  • Tyszkiewicz, E., & Roux, E. (1987). Role of the superoxide anion O 2-and Hydroxyl Radical (OH-) in ATP synthesis obtained with spinach chloroplasts in darkness. In Progress in photosynthesis research (pp. 213–216). Springer.
  • Umamaheswari, A., & Venkateswarlu, K. (2004). Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris. Ecotoxicology and Environmental Safety, 58(2), 256–259. https://doi.org/10.1016/j.ecoenv.2003.11.002
  • Urbach, W., Lurz, G., Hartmeyer, H., & Urbach, D. (1979). Induction of reversible tolerance of algal cells to various herbicides. I. Inhibition of photosynthesis by phenol herbicides and dibromothymoquinone, its reversal and development of insensitivity to different herbicides. Zeitschrift Für Naturforschung C, 34(11), 951–956. https://doi.org/10.1515/znc-1979-1114
  • van Hameren, G., Campbell, G., Deck, M., Berthelot, J., Gautier, B., Quintana, P., Chrast, R., & Tricaud, N. (2019). In vivo real-time dynamics of ATP and ROS production in axonal mitochondria show decoupling in mouse models of peripheral neuropathies. Acta Neuropathologica Communications, 7(1), 86. https://doi.org/10.1186/s40478-019-0740-4
  • Vass, I., Sanakis, Y., Spetea, C., & Petrouleas, V. (1995). Effects of photoinhibition on the QA-Fe2+ complex of photosystem II studied by EPR and Mössbauer spectroscopy. Biochemistry, 34(13), 4434–4440. https://doi.org/10.1021/bi00013a036
  • Venkatachalam, A., Parashar, A., & Manoj, K. M. (2016). Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacology, 4(1), 2–38. https://doi.org/10.1186/s40203-016-0016-7
  • Vermaas, W. F., Renger, G., & Arntzen, C. J. (1984). Herbicide/quinone binding interactions in photosystem II. Zeitschrift Für Naturforschung C, 39(5), 368–373. https://doi.org/10.1515/znc-1984-0511
  • Vermaas, W. F. (1984). The interaction of quinones, herbicides and bicarbonate with their binding environment at the acceptor side of photosystem II in photosynthesis (Doctoral dissertation). Vermaas.
  • Vidal, T., Goncalves, A. M., Pardal, M. A., Azeiteiro, U. M., & Goncalves, F. (2009). Assessing the toxicity of betanal® on growth and sensitiveness of five freshwater planktonic species. Fresen. Environ. Bull, 18(5), 585–589.
  • Villarroel, M. J., Sancho, E., Ferrando, M. D., & Andreu, E. (2003). Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere, 53(8), 857–864. https://doi.org/10.1016/S0045-6535(03)00546-0
  • Voon, C. P., Guan, X., Sun, Y., Sahu, A., Chan, M. N., Gardeström, P., Wagner, S., Fuchs, P., Nietzel, T., Versaw, W. K., Schwarzländer, M., & Lim, B. L. (2018). ATP compartmentation in plastids and cytosol of Arabidopsis thaliana revealed by fluorescent protein sensing. Proceedings of the National Academy of Sciences, 115(45), E10778–E10787. https://doi.org/10.1073/pnas.1711497115
  • Wallace, K. (2020). Challenging the current paradigm of the chemiosmotic theory for cyanide toxicity. Toxicology, 432, 152377–152377. https://doi.org/10.1016/j.tox.2020.152377
  • Wang, X., Tachikawa, H., Yi, X., Manoj, K. M., & Hager, L. P. (2003). Two-dimensional NMR study of the heme active site structure of chloroperoxidase. Journal of Biological Chemistry, 278(10), 7765–7774. https://doi.org/10.1074/jbc.M209462200
  • Warzecha, H. (2016). Lights, P450, action! Metabolite formation in chloroplasts. Journal of Experimental Botany, 67(8), 2123–2125. https://doi.org/10.1093/jxb/erw114
  • Watling-Payne, A. S., & Selwyn, M. J. (1974). Inhibition and uncoupling of photophosphorylation in isolated chloroplasts by organotin, organomercury and diphenyleneiodonium compounds. Biochemical Journal, 142(1), 65–74. https://doi.org/10.1042/bj1420065
  • Wilkinson, A. D., Collier, C. J., Flores, F., & Negri, A. P. (2015). Acute and additive toxicity of ten photosystem-II herbicides to seagrass. Scientific Reports, 5(1), 1–11. https://doi.org/10.1038/srep17443
  • Willner, I., & Calvin, M. (1981). Method of water photolysis. In E. Patent (ed.).
  • Wilski, S., Johanningmeier, U., Hertel, S., & Oettmeier, W. (2006). Herbicide binding in various mutants of the photosystem II D1 protein of Chlamydomonas reinhardtii. Pesticide Biochemistry and Physiology, 84(3), 157–164. https://doi.org/10.1016/j.pestbp.2005.07.001
  • Xu, Y.-H., Liu, R., Yan, L., Liu, Z.-Q., Jiang, S.-C., Shen, Y.-Y., Wang, X.-F., & Zhang, D.-P. (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany, 63(3), 1095–1106. https://doi.org/10.1093/jxb/err315
  • Xu, C., Zhang, J., Mihai, D. M., & Washington, I. (2014). Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP. Journal of Cell Science, 127(Pt 2), 388–399. https://doi.org/10.1242/jcs.134262
  • Xu, X., Zhao, X., Liu, T. C. Y., & Pan, H. (2008). Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomedicine and Laser Surgery, 26(3), 197–202. https://doi.org/10.1089/pho.2007.2125
  • Yadav, K. S., Semchonok, D. A., Nosek, L., Kouřil, R., Fucile, G., Boekema, E. J., & Eichacker, L. A. (2017). Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochimica et Biophysica Acta. Bioenergetics, 1858(1), 12–20. https://doi.org/10.1016/j.bbabio.2016.10.006
  • Yokono, M., Takabayashi, A., Kishimoto, J., Fujita, T., Iwai, M., Murakami, A., Akimoto, S., & Tanaka, A. (2019). The PSI-PSII megacomplex in green plants. Plant & Cell Physiology, 60(5), 1098–1108. https://doi.org/10.1093/pcp/pcz026
  • Yruela, I., Montoya, G., Alonso, P. J., & Picorel, R. (1991). Identification of the pheophytin-QA-Fe domain of the reducing side of the photosystem II as the Cu (II)-inhibitory binding site. Journal of Biological Chemistry, 266(34), 22847–22850. https://doi.org/10.1016/S0021-9258(18)54431-8
  • Yu, H., Wu, C.-H., Schut, G. J., Haja, D. K., Zhao, G., Peters, J. W., Adams, M. W. W., & Li, H. (2018). Structure of an ancient respiratory system. Cell, 173(7), 1636–1649. https://doi.org/10.1016/j.cell.2018.03.071
  • Zhang, L., Pakrasi, H. B., & Whitmarsh, J. (1994). Photoautotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803 in the absence of cytochrome c553 and plastocyanin. Journal of Biological Chemistry, 269(7), 5036–5042. https://doi.org/10.1016/S0021-9258(17)37650-0
  • Zielke, A. (2014). Photo-excitation of electrons in cytochrome c oxidase as a theory of the mechanism of the increase of ATP production in mitochondria by laser therapy [Paper presentation]. Proc. SPIE 8932, Mechanisms for Low-Light Therapy IX, 893204. https://doi.org/10.1117/12.2037141
  • Zimmermann, K., Heck, M., Frank, J., Kern, J., Vass, I., & Zouni, A. (2006). Herbicide binding and thermal stability of photosystem II isolated from Thermosynechococcus elongatus. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757 (2), 106–114. https://doi.org/10.1016/j.bbabio.2005.12.002
  • Zobnina, V., Lambreva, M. D., Rea, G., Campi, G., Antonacci, A., Scognamiglio, V., Giardi, M. T., & Polticelli, F. (2017). The plastoquinol-plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations. Photosynthesis Research, 131(1), 15–30. https://doi.org/10.1007/s11120-016-0292-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.