220
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

An insight into the binding mechanism of Viprinin and its morpholine and piperidine derivatives with HIV-1 Vpr: molecular dynamics simulation, principal component analysis and binding free energy calculation study

& ORCID Icon
Pages 10918-10930 | Received 22 Aug 2019, Accepted 02 Jul 2021, Published online: 23 Jul 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-levelparallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein Dynamics Inferredfrom Theory and Experiments. Bioinformatics (Oxford, England), 27(11), 1575–1577. https://doi.org/10.1093/bioinformatics/btr168
  • Barnitz, R. A., Chaigne-Delalande, B., Bolton, D. L., & Lenardo, M. J. (2011). Exposed Hydrophobic Residues in Human Immunodeficiency Virus Type 1 Vpr Helix-1 Are Important for Cell Cycle Arrest and Cell Death. PLoS One, 6(9), e24924. https://doi.org/10.1371/journal.pone.0024924
  • Belzile, J.-P., Abrahamyan, L. G., Gérard, F. C. A., Rougeau, N., & Cohen, É. A. (2010). Formation of mobile chromatin-associated nuclear foci containing HIV-1 Vpr and VPRBP is critical for the induction of G2 cell cycle arrest. PLoS Pathog, 6(9), e1001080. https://doi.org/10.1371/journal.ppat.1001080
  • Belzile, J.-P., Richard, J., Rougeau, N., Xiao, Y., & Cohen, E. A. (2010). HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest. J Virol, 84(7), 3320–3330. https://doi.org/10.1128/JVI.02590-09
  • Bourbigot, S., Beltz, H., Denis, J., Morellet, N., Roques, B. P., Mély, Y., & Bouaziz, S. (2005). The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain. The Biochemical Journal, 387(Pt 2), 333–341. https://doi.org/10.1042/BJ20041759
  • Chen, M., Elder, R. T., Yu, M., O'Gorman, M. G., Selig, L., Benarous, R., Yamamoto, A., & Zhao, Y. (1999). Mutational analysis of Vpr-induced G2 arrest, nuclear localization, and cell death in fission yeast. Journal of Virology, 73(4), 3236–3245. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10074177 https://doi.org/10.1128/JVI.73.4.3236-3245.1999
  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., & Damborsky, J. (2012). CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Computational Biology, 8(10), e1002708. https://doi.org/10.1371/journal.pcbi.1002708
  • DeHart, J. L., Zimmerman, E. S., Ardon, O., Monteiro-Filho, C. M. R., Argañaraz, E. R., & Planelles, V. (2007). HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system. Virology Journal, 4(1), 57. https://doi.org/10.1186/1743-422X-4-57
  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1–26. https://doi.org/10.1214/aos/1176344552
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • González, M. E. (2017). The HIV-1 Vpr Protein: A multifaceted target for therapeutic intervention. International Journal of Molecular Sciences, 18(1), 126. https://doi.org/10.3390/ijms18010126
  • Hagiwara, K., Ishii, H., Murakami, T., Takeshima, S-n., Chutiwitoonchai, N., Kodama, E. N., Kawaji, K., Kondoh, Y., Honda, K., Osada, H., Tsunetsugu-Yokota, Y., Suzuki, M., & Aida, Y. (2015). Synthesis of a Vpr-binding derivative for use as a novel HIV-1 Inhibitor. PloS One, 10(12), e0145573. https://doi.org/10.1371/journal.pone.0145573
  • Hayward, S., & Groot, B. L. (2008). Normal modes and essential dynamics. Methods in Molecular Biology (Clifton, N.J.), 443, 89–106. https://doi.org/10.1007/978-1-59745-177-2_5
  • Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Jacotot, E., Ferri, K. F., El Hamel, C., Brenner, C., Druillennec, S., Hoebeke, J., Rustin, P., Métivier, D., Lenoir, C., Geuskens, M., Vieira, H. L., Loeffler, M., Belzacq, A. S., Briand, J. P., Zamzami, N., Edelman, L., Xie, Z. H., Reed, J. C., Roques, B. P., & Kroemer, G. (2001). Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein rR and Bcl-2. The Journal of Experimental Medicine, 193(4), 509–520. https://doi.org/10.1084/jem.193.4.509
  • Kamata, M., Nitahara-Kasahara, Y., Miyamoto, Y., Yoneda, Y., & Aida, Y. (2005). Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr. Journal of Virology, 79(6), 3557–3564.https://doi.org/10.1128/JVI.79.6.3557-3564.2005
  • Kamata, M., Wu, R. P., An, D. S., Saxe, J. P., Damoiseaux, R., Phelps, M. E., Huang, J., & Chen, I. S. Y. (2006). Cell-based chemical genetic screen identifies damnacanthal as an inhibitor of HIV-1 Vpr induced cell death. Biochemical and Biophysical Research Communications, 348(3), 1101–1106. https://doi.org/10.1016/j.bbrc.2006.07.158
  • Kumari, R., Kumar, R., Lynn, A., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. Chemical Reviews, 71(6), 525–616. https://doi.org/10.1021/cr60274a001
  • Levy, D. N., Refaeli, Y., MacGregor, R. R., & Weiner, D. B. (1994). Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 10873–10877. https://doi.org/10.1073/pnas.91.23.10873
  • Majumder, S., Chaudhuri, D., Datta, J., & Giri, K. (2021). Exploring the intrinsic dynamics of SARS-CoV-2, SARS-CoV and MERS-CoV spike glycoprotein through normal mode analysis using anisotropic network model. Journal of Molecular Graphics & Modelling, 102, 107778. https://doi.org/10.1016/j.jmgm.2020.107778
  • Miyatake, H., Sanjoh, A., Murakami, T., Murakami, H., Matsuda, G., Hagiwara, K., Yokoyama, M., Sato, H., Miyamoto, Y., Dohmae, N., & Aida, Y. (2016). Molecular mechanism of HIV-1 Vpr for binding to importin-α. Journal of Molecular Biology, 428(13), 2744–2757. https://doi.org/10.1016/j.jmb.2016.05.003
  • Morellet, N., Bouaziz, S., Petitjean, P., & Roques, B. (2003). NMR Structure of the HIV-1 Regulatory Protein VPR. Journal of Molecular Biology, 327(1), 215–227. https://doi.org/10.1016/S0022-2836(03)00060-3
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Ngo, S. T., Hung, H. M., & Nguyen, M. T. (2016). Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. Journal of Computational Chemistry, 37(31), 2734–2742. https://doi.org/10.1002/jcc.24502
  • Ngo, S. T., Vu, K. B., Bui, L. M., & Vu, V. V. (2019). Effective estimation of ligand-binding affinity using biased sampling method. ACS Omega, 4(2), 3887–3893. https://doi.org/10.1021/acsomega.8b03258
  • Ogawa, K., Shibata, R., Kiyomasu, T., Higuchi, I., Kishida, Y., Ishimoto, A., & Adachi, A. (1989). Mutational analysis of the human immunodeficiency virus vpr open reading frame. Journal of Virology, 63(9), 4110–4114. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2474678 https://doi.org/10.1128/JVI.63.9.4110-4114.1989
  • Ong, E. B. B., Watanabe, N., Saito, A., Futamura, Y., Abd El Galil, K. H., Koito, A., Najimudin, N., & Osada, H. (2011). Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. The Journal of Biological Chemistry, 286(16), 14049–14056. https://doi.org/10.1074/jbc.M110.185397
  • Padhi, S., Khan, N., Jameel, S., & Priyakumar, U. D. (2013). Molecular dynamics simulations reveal the HIV-1 Vpu transmembrane protein to form stable pentamers. PLoS One, 8(11), e79779. https://doi.org/10.1371/journal.pone.0079779
  • Popov, S., Rexach, M., Zybarth, G., Reiling, N., Lee, M. A., Ratner, L., Lane, C. M., Moore, M. S., Blobel, G., & Bukrinsky, M. (1998). Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. The EMBO Journal, 17(4), 909–917. https://doi.org/10.1093/emboj/17.4.909
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Stromájer-Rácz, T., Gazdag, Z., Belágyi, J., Vágvölgyi, C., Zhao, R. Y., & Pesti, M. (2010). Oxidative stress induced by HIV-1 F34IVpr in Schizosaccharomyces pombe is one of its multiple functions. Experimental and Molecular Pathology, 88(1), 38–44. https://doi.org/10.1016/j.yexmp.2009.10.002
  • Tam, N. M., Vu, K. B., Vu, V. V., & Ngo, S. T. (2018). Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme. Chemical Physics Letters, 701, 65–71. https://doi.org/10.1016/j.cplett.2018.04.024
  • van Aalten, D. M. F., Bywater, R., Findlay, J. B. C., Hendlich, M., Hooft, R. W. W., & Vriend, G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262. https://doi.org/10.1007/BF00355047
  • Vorontsov, I. I., & Miyashita, O. (2011). Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N. Journal of Computational Chemistry, 32(6), 1043–1053. https://doi.org/10.1002/jcc.21683
  • Watanabe, N., Nishihara, Y., Yamaguchi, T., Koito, A., Miyoshi, H., Kakeya, H., & Osada, H. (2006). Fumagillin suppresses HIV-1 infection of macrophages through the inhibition of Vpr activity. FEBS Letters, 580(11), 2598–2602. https://doi.org/10.1016/j.febslet.2006.04.007
  • Win, N. N., Ngwe, H., Abe, I., & Morita, H. (2017). Naturally occurring Vpr inhibitors from medicinal plants of Myanmar. Journal of Natural Medicines, 71(4), 579–589. https://doi.org/10.1007/s11418-017-1104-7
  • Wu, Y., Zhou, X., Barnes, C. O., DeLucia, M., Cohen, A. E., Gronenborn, A. M., Ahn, J., & Calero, G. (2016). The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nature Structural & Molecular Biology, 23(10), 933–940. https://doi.org/10.1038/nsmb.3284
  • Yao, S., Torres, A. M., Azad, A. A., Macreadie, I. G., & Norton, R. S. (1998). Solution structure of peptides from HIV-1 Vpr protein that cause membrane permeabilization and growth arrest. Journal of Peptide Science : An Official Publication of the European Peptide Society, 4(7), 426–435. https://doi.org/10.1002/(SICI)1099-1387(199811)4:7 < 426::AID-PSC161 > 3.0.CO;2-J
  • Yuan, X., Matsuda, Z., Matsuda, M., Essex, M., & Lee, T. H. (1990). Human Immunodeficiency Virus vpr Gene Encodes a Virion-Associated Protein. AIDS Research and Human Retroviruses, 6(11), 1265–1271. https://doi.org/10.1089/aid.1990.6.1265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.