154
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A novel vision into the binding behavior of curcumin with human serum albumin-holo transferrin complex: molecular dynamic simulation and multi-spectroscopic perspectives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 11154-11172 | Received 11 Apr 2021, Accepted 10 Jul 2021, Published online: 30 Jul 2021

References

  • Alhazmi, H. A., Ali Bokar Nasib, A., Musleh, Y. A., Hijri, K. Q., Rehman, Z. U., Khuwaja, G., Al-Bratty, M., Javed, S. A., & Arbab, I. A. (2020). Application of drug–metal ion interaction principle in conductometric determination of imatinib, sorafenib, gefitinib and bosutinib. Open Chemistry, 18(1), 798–807. https://doi.org/10.1515/chem-2020-0123
  • Banerjee, S., & Chakravarty, A. R. (2015). Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Accounts of Chemical Research, 48(7), 2075–2083. https://doi.org/10.1021/acs.accounts.5b00127
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berggård, T., Linse, S., & James, P. (2007). Methods for the detection and analysis of protein-protein interactions. Proteomics, 7(16), 2833–2842. https://doi.org/10.1002/pmic.200700131
  • Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S., & Domingues, M. M. (2018). Application of light scattering techniques to nanoparticle characterization and development. Frontiers in Chemistry, 256, 237. https://doi.org/10.3389/fchem.2018.00237
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(19), 5179–5197. https://doi.org/10.1021/ja00124a002
  • Croom, E. (2012). Metabolism of xenobiotics of human environments. Progress in Molecular Biology and Translational Science, 112, 31–88. https://doi.org/10.1016/B978-0-12-415813-9.00003-9
  • Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural & Molecular Biology, 5(9), 827–835. https://doi.org/10.1038/1869
  • De, R., Kundu, P., Swarnakar, S., Ramamurthy, T., Chowdhury, A., Nair, G. B., & Mukhopadhyay, A. K. (2009). Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy, 53(4), 1592–1597. https://doi.org/10.1128/AAC.01242-08
  • Dezhampanah, H., Esmaili, M., & Hasani, L. (2018). Milk caseins as useful vehicle for delivery of dipyridamole drug. Journal of Biomolecular Structure & Dynamics, 36(6), 1602–1616. https://doi.org/10.1080/07391102.2017.1329100
  • Dezhampanah, H., Esmaili, M., & Khorshidi, A. (2016). A combination of spectroscopic and molecular docking techniques to study interaction of bis (indolyl) methane with bovine milk α-casein. International Journal of Food Properties, 20(11), 2686–2698. https://doi.org/10.1080/10942912.2016.1247857
  • Dezhampanah, H., Esmaili, M., & Khorshidi, A. (2017). Milk β-casein as a vehicle for delivery of bis (indolyl) methane: Spectroscopy and molecular docking studies. Journal of Molecular Structure, 1136, 50–58. https://doi.org/10.1016/j.molstruc.2017.01.065
  • Eskew, M. W., Koslen, M. M., & Benight, A. S. (2021). Ligand binding to natural and modified human serum albumin. Analytical Biochemistry, 612, 113843. https://doi.org/10.1016/j.ab.2020.113843
  • Goswami, S., Peipert, B. J., Helenowski, I., Yount, S. E., & Sturgeon, C. (2017). Disease and treatment factors associated with lower quality of life scores in adults with multiple endocrine neoplasia type I. Surgery, 162(6), 1270–1277. https://doi.org/10.1016/j.surg.2017.07.023
  • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
  • Jahanban-Esfahlan, A., Ostadrahimi, A., Jahanban-Esfahlan, R., Roufegarinejad, L., Tabibiazar, M., & Amarowicz, R. (2019). Recent developments in the detection of bovine serum albumin. International Journal of Biological Macromolecules, 138, 602–617. https://doi.org/10.1016/j.ijbiomac.2019.07.096
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Jahanban-Esfahlan, R., Tabibiazar, M., & Amarowicz, R. (2020). Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 207, 120317. https://doi.org/10.1016/j.talanta.2019.120317
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Tabibiazar, M., Lorenzo, J. M., & Amarowicz, R. (2021). Exploring the interactions between caffeic acid and human serum albumin using spectroscopic and molecular docking techniques. Polish Journal of Food and Nutrition Sciences, 71(1), 69–77. https://doi.org/10.31883/pjfns/133203
  • Jahanban-Esfahlan, A., Dastmalchi, S., & Davaran, S. (2016). A simple improved desolvation method for the rapid preparation of albumin nanoparticles. International Journal of Biological Macromolecules, 91, 703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032
  • Khan, M. V., Rabbani, G., Ahmad, E., & Khan, R. H. (2014). Fluoroalcohols-induced modulation and amyloid formation in conalbumin. International Journal of Biological Macromolecules, 70, 606–614. https://doi.org/10.1016/j.ijbiomac.2014.07.027
  • Koohzad, F., Beigoli, S., JahanShah-Talab, M., Kamshad, M., Assaran Darban, R., & Chamani, J. (2017). Dissection of the interaction between human holo-transferrin and ciprofloxacin in the presence of silver nanoparticles: Spectroscopic approaches. Biologia, 72(5), 569–580. https://doi.org/10.1515/biolog-2017-0066
  • Lu, Y., Lv, J., Zhang, G., Wang, G., & Liu, Q. (2010). Interaction of an anthracycline disaccharide with ctDNA: Investigation by spectroscopic technique and modeling studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 75(5), 1511–1515. https://doi.org/10.1016/j.saa.2010.02.008
  • Makarska-Bialokoz, M. (2018). Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 193, 23–32. https://doi.org/10.1016/j.saa.2017.11.063
  • Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In B. B. Aggarwal, Y. J. Surh, & S. Shishodia (Eds.), The molecular targets and therapeutic uses of curcumin in health and disease (pp. 105–125). Springer. https://doi.org/10.1007/978-0-387-46401-5-3
  • Mokaberi, P., Babayan-Mashhadi, F., Amiri Tehranizadeh, Z. , Saberi, M. R., & Chamani, J. (2021). Analysis of the interaction behavior between nano-curcumin and two human serum proteins: Combining spectroscopy and molecular stimulation to understand protein-protein interaction. Journal of Biomolecular Structure & Dynamics, 39(9), 3358–3377. https://doi.org/10.1080/07391102.2020.1766570
  • Mokaberi, P., Reyhani, V., Amiri-Tehranizadeh, Z., Saberi, M. R., Beigoli, S., Samandar, F., & Chamani, J. (2019). New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: Binary and ternary approaches. New Journal of Chemistry, 43(21), 8132–8145. https://doi.org/10.1039/C9NJ01048C
  • Nicoli, F., Barth, A., Bae, W., Neukirchinger, F., Crevenna, A. H., Lamb, D. C., & Liedl, T. (2017). Directional photonic wire mediated by homo-Förster resonance energy transfer on a DNA origami platform. ACS Nano, 11(11), 11264–11272. https://doi.org/10.1021/acsnano.7b05631
  • Pacheco, M. E., & Bruzzone, L. (2013). Synchronous fluorescence spectrometry: Conformational investigation or inner filter effect? Journal of Luminescence, 137, 138–142. https://doi.org/10.1016/j.jlumin.2012.12.056
  • Park, J., & Conteas, C. N. (2010). Anti-carcinogenic properties of curcumin on colorectal cancer. World Journal of Gastrointestinal Oncology, 2(4), 169–176. https://doi.org/10.4251/wjgo.v2.i4.169
  • Piston, D. W., & Kremers, G.-J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends in Biochemical Sciences, 32(9), 407–414. https://doi.org/10.1016/j.tibs.2007.08.003
  • Quinlan, G. J., Martin, G. S., & Evans, T. W. (2005). Albumin: Biochemical properties and therapeutic potential. Hepatology (Baltimore, MD.), 41(6), 1211–1219. https://doi.org/10.1002/hep.20720
  • Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International Journal of Biological Macromolecules, 123, 979–990. doi: 10.1016/j.ijbiomac
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). pH-induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62(3), 487–499. https://doi.org/10.1007/s12013-011-9335-9
  • Rabbani, G., Ahmad, E., Zaidi, N., & Khan, R. H. (2011). pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochemistry and Biophysics, 61(3), 551–560. https://doi.org/10.1007/s12013-011-9237-x
  • Rabbani, G., Baig, M. H., Jan, A. T., Ju Lee, E., Khan, M. V., Zaman, M., Farouk, A. E., Khan, R. H., & Choi, I. (2017) Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, G., Baig, M. H., Lee, E. J., Cho, W. K., Ma, J. Y., & Choi, I. (2017). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmaceutics, 14(5), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.6b01124
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Reddy, R. C., Vatsala, P. G., Keshamouni, V. G., Padmanaban, G., & Rangarajan, P. N. (2005). Curcumin for malaria therapy. Biochemical and Biophysical Research Communications, 326(2), 472–474. https://doi.org/10.1016/j.bbrc.2004.11.051
  • Reith, W., & Mach, B. (2001). The bare lymphocyte syndrome and the regulation of MHC expression. Annual Review of Immunology, 19(1), 331–373. https://doi.org/10.1146/annurev.immunol.19.1.331
  • Richards, A. L., Eckhardt, M., & Krogan, N. J. (2021). Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Molecular Systems Biology, 17(1), e8792. https://doi.org/10.15252/msb.20188792
  • Roufegarinejad, L., Jahanban-Esfahlan, A., Sajed-Amin, S., Panahi-Azar, V., & Tabibiazar, M. (2018). Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies. Journal of Molecular Recognition: JMR, 31(7), e2704. https://doi.org/10.1002/jmr.2704
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Santos, F. C., Costa, P. J., Garcia, M. H., & Morais, T. S. (2021). Binding of RuCp complexes with human apo-transferrin: Fluorescence spectroscopy and molecular docking methods. BioMetals, 22, 1–4. https://doi.org/10.1007/s10534-021-00325-w
  • Sarzehi, S., & Chamani, J. (2010). Investigation on the interaction between tamoxifen and human holo-transferrin: Determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods. International Journal of Biological Macromolecules, 47(4), 558–569. https://doi.org/10.1016/j.ijbiomac.2010.08.002
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure and Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Sharifi-Rad, J., Rayess, Y. E., Rizk, A. A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocińska, K., Zielińska, D., Salehi, B., Setzer, W. N., Dosoky, N. S., Taheri, Y., El Beyrouthy, M., Martorell, M., Ostrander, E. A., Suleria, H. A. R., Cho, W. C., Maroyi, A., & Martins, N. (2020). Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Frontiers in Pharmacology, 11, 01021. https://doi.org/10.3389/fphar.2020.01021
  • Stohs, S. J., Chen, O., Ray, S. D., Ji, J., Bucci, L. R., & Preuss, H. G. (2020). Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application. Molecules, 25(6), 1397. https://doi.org/10.3390/molecules25061397
  • Stroet, M., Caron, B., Visscher, K. M., Geerke, D. P., Malde, A. K., & Mark, A. E. (2018). Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane. Journal of Chemical Theory and Computation, 14(11), 5834–5845. https://doi.org/10.1007/s00216-020-02917-w https://doi.org/10.1021/acs.jctc.8b00768
  • Suo, Z., Ma, X., Meng, Z., Du, Q., & Li, H. (2018). Interaction between trelagliptin and pepsin through spectroscopy methods and molecular dynamics simulation. Spectroscopy Letters, 51(7), 332–339. https://doi.org/10.1080/00387010.2018.1469154
  • Tehranizadeh, Z. A., Sankian, M., Fazly Bazzaz, B. S., Chamani, J., Mehri, S., Baratian, A., & Saberi, M. R. (2019). The immunotoxin activity of exotoxin A is sensitive to domain modifications. International Journal of Biological Macromolecules, 134, 1120–1131. https://doi.org/10.1016/j.ijbiomac.2019.05.137
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Yamasaki, K., Chuang, V. T. G., Maruyama, T., & Otagiri, M. (2013). Albumin-drug interaction and its clinical implication. Biochimica et Biophysica Acta, 1830(12), 5435–5443. https://doi.org/10.1016/j.bbagen.2013.05.005
  • Yuan, L., Liu, M., Liu, G., Li, D., Wang, Z., Wang, B., Han, J., & Zhang, M. (2017). Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 173, 584–592. https://doi.org/10.1016/j.saa.2016.10.023
  • Zhang, G., Chen, X., Guo, J., & Wang, J. (2009). Spectroscopic investigation of the interaction between chrysin and bovine serum albumin. Journal of Molecular Structure, 921(1–3), 346–351. https://doi.org/10.1016/j.molstruc.2009.01.036
  • Zhang, G., Que, Q., Pan, J., & Guo, J. (2008). Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. Journal of Molecular Structure, 881(1–3), 132–138. https://doi.org/10.1016/j.molstruc.2007.09.002
  • Zhu, J., Sanidad, K. Z., Sukamtoh, E., & Zhang, G. (2017). Potential roles of chemical degradation in the biological activities of curcumin. Food & Function, 8(3), 907–914. https://doi.org/10.1039/c6fo01770c
  • Zhu, M., Wang, L., Wang, Y., Zhou, J., Ding, J., Li, W., Xin, Y., Fan, S., Wang, Z., & Wang, Y. (2018). Biointeractions of herbicide atrazine with human serum albumin: UV-Vis, fluorescence and circular dichroism approaches. International Journal of Environmental Research and Public Health, 15(1), 116. https://doi.org/10.3390/ijerph15010116
  • Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014, 186864. https://doi.org/10.1155/2014/186864

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.