236
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Accuracy and precision of binding free energy prediction for a tacrine related lead inhibitor of acetylcholinesterase with an arsenal of supercomputerized molecular modelling methods: a comparative study

ORCID Icon
Pages 11291-11319 | Received 09 Jun 2021, Accepted 15 Jul 2021, Published online: 29 Jul 2021

References

  • Athanasiou, C., Vasilakaki, S., Dellis, D., & Cournia, Z. (2018). Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2. Journal of Computer-AidedMolecular Design, 32(1), 21–44. https://doi.org/10.1007/s10822-017-0075-9
  • Banchi, L., Fingerhuth, M., Babej, T., Ing, C., & Arrazola, J. M. (2020). Molecular docking with Gaussian Boson sampling. Science Advances, 6(23), eaax1950. https://doi.org/10.1126/sciadv.aax1950
  • Barril, X., Orozco, M., & Luque, F. J. (1999). Predicting relative binding free energies of tacrine-huperzine A hybrids as inhibitors of acetylcholinesterase §. Journal of Medicinal Chemistry , 42(25), 5110–5119. https://doi.org/10.1021/jm990371u
  • Bautista‐Aguilera, Ó. M., Ismaili, L., Iriepa, I., Diez‐Iriepa, D., Chabchoub, F., Marco‐Contelles, J., & Pérez, M. (2021). Tacrines as therapeutic agents for Alzheimer's disease. V. recent developments. Chemical Record (New York, N.Y.), 21(1), 162–174. https://doi.org/10.1002/tcr.202000107
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Pullman B. (Ed.), Intermolecular forces. The Jerusalem symposia on quantum chemistry and biochemistry (pp. 14, 331–342). Springer. https://doi.org/10.1007/978-94-015-7658-1_21
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bhati, A. P., Wan, S., Hu, Y., Sherborne, B., & Coveney, P. V. (2018). Uncertainty quantification in alchemical free energy methods. Journal of Chemical Theory and Computation, 14(6), 2867–2880. https://doi.org/10.1021/acs.jctc.7b01143
  • Bhati, A. P., Wan, S., Wright, D. W., & Coveney, P. V. (2017). Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration. Journal of Chemical Theory and Computation, 13(1), 210–222. https://doi.org/10.1021/acs.jctc.6b00979
  • Blackard, W. G. J., Sood, G. K., Crowe, D. R., & Fallon, M. B. (1998). Tacrine. A cause of fatal hepatotoxicity? Journal of Clinical Gastroenterology, 26(1), 57–59. https://doi.org/10.1097/00004836-199801000-00015
  • Ceschi, M. A., Pilotti, R. M., Lopes, J. P. B., Dapont, H., Rocha, J. B. T. d., Afolabi, B. A., Guedes, I. A., Dardenne, L. E., Ceschi, M. A., Pilotti, R. M., Lopes, J. P. B., Dapont, H., Rocha, J. B. T., da Afolabi, B. A., Guedes, I. A., & Dardenne, L. E. (2020). An expedient synthesis of tacrine-squaric hybrids as potent, selective and dual-binding cholinesterase inhibitors. Journal of the Brazilian Chemical Society, 31(5), 857–866. https://doi.org/10.21577/0103-5053.20200019
  • Chen, Y., Lin, H., Zhu, J., Gu, K., Li, Q., He, S., Lu, X., Tan, R., Pei, Y., Wu, L., Bian, Y., & Sun, H. (2017). Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer’s disease. RSC Advances, 7(54), 33851–33867. https://doi.org/10.1039/C7RA04385F
  • Cheng, S., Song, W., Yuan, X., & Xu, Y. (2017). Gorge motions of acetylcholinesterase revealed by microsecond molecular dynamics simulations. Scientific Reports, 7(1), 3219. https://doi.org/10.1038/s41598-017-03088-y
  • Cheng, Z.-Q., Zhu, K.-K., Zhang, J., Song, J.-L., Muehlmann, L. A., Jiang, C.-S., Liu, C.-L., & Zhang, H. (2019). Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Bioorganic Chemistry, 83, 277–288. https://doi.org/10.1016/j.bioorg.2018.10.057
  • Chudoba, J., Křenková, I., Mulač, M., Ruda, M., & Sitera, J. (2017). The Czech National Grid Infrastructure. Journal of Physics: Conference Series, 898, 082042. https://doi.org/10.1088/1742-6596/898/8/082042
  • Clark, A. J., Gindin, T., Zhang, B., Wang, L., Abel, R., Murret, C. S., Xu, F., Bao, A., Lu, N. J., Zhou, T., Kwong, P. D., Shapiro, L., Honig, B., & Friesner, R. A. (2017). Free energy perturbation calculation of relative binding free energy between broadly neutralizing antibodies and the gp120 glycoprotein of HIV-1. Journal of Molecular Biology, 429(7), 930–947. https://doi.org/10.1016/j.jmb.2016.11.021
  • Cournia, Z., Allen, B., & Sherman, W. (2017). Relative binding free energy calculations in drug discovery: recent advances and practical considerations. Journal of Chemical Information and Modeling, 57(12), 2911–2937. https://doi.org/10.1021/acs.jcim.7b00564
  • da Silva, J. A. V., Nepovimova, E., Ramalho, T. C., Kuca, K., & Costa França, T. C. (2019). Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chemico-Biological Interactions, 307, 195–205. https://doi.org/10.1016/j.cbi.2019.05.019
  • Dakka, J., Turilli, M., Wright, D. W., Zasada, S. J., Balasubramanian, V., Wan, S., Coveney, P. V., & Jha, S. (2018). High-throughput binding affinity calculations at extreme scales. BMC Bioinformatics, 19(S18), 482. https://doi.org/10.1186/s12859-018-2506-6
  • Dolezal, R., Melikova, M., Mesicek, J., & Kuca, K. (2016). Rational discovery of GSK3-beta modulators aided by protein pocket prediction and high-throughput molecular docking. In N. T. Nguyen, L. Iliadis, Y. Manolopoulos, & B. Trawiński (Eds.), Computational Collective Intelligence (pp. 429–439). Springer International Publishing. https://doi.org/10.1007/978-3-319-45246-3_41
  • Fratev, F., & Sirimulla, S. (2019). An improved free energy perturbation FEP + sampling protocol for flexible ligand-binding domains. Scientific Reports, 9(1), 16829 https://doi.org/10.1038/s41598-019-53133-1
  • Gapsys, V., Pérez-Benito, L., Aldeghi, M., Seeliger, D., Vlijmen, H., van Tresadern, G., & Groot, B. L. & de, (2019). Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Chemical Science©, 11(4), 1140–1152. https://doi.org/10.1039/c9sc03754c
  • Genheden, S., & Ryde, U. (2010). How to obtain statistically converged MM/GBSA results. Journal of Computational Chemistry, 31(4), 837–846. https://doi.org/10.1002/jcc.21366
  • Gerlits, O., Kong, X., Cheng, X., Wymore, T., Blumenthal, D. K., Taylor, P., Radić, Z., & Kovalevsky, A. (2019). Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. The Journal of Biological Chemistry, 294(27), 10607–10618. https://doi.org/10.1074/jbc.RA119.008725
  • Girek, M., & Szymański, P. (2019). Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: Influence of chemical structures on biological activities. Chemical Papers, 73(2), 269–289. https://doi.org/10.1007/s11696-018-0590-8
  • Gorecki, L., Hepnarova, V., Karasova, J. Z., Hrabinova, M., Courageux, C., Dias, J., Kucera, T., Kobrlova, T., Muckova, L., Prchal, L., Malinak, D., Jun, D., Musilek, K., Worek, F., Nachon, F., Soukup, O., & Korabecny, J. (2021). Development of versatile and potent monoquaternary reactivators of acetylcholinesterase. Archives of Toxicology, 95(3), 985–1001. https://doi.org/10.1007/s00204-021-02981-w
  • Hall, R., Dixon, T., & Dickson, A. (2020). On calculating free energy differences using ensembles of transition paths. Frontiers in Molecular Biosciences, 7, 106 https://doi.org/10.3389/fmolb.2020.00106
  • Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I., & Sussman, J. L. (1993). Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 9031–9035. https://doi.org/10.1073/pnas.90.19.9031
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hoekstra, A. G., Portegies Zwart, S., & Coveney, P. V. (2019). Multiscale modelling, simulation and computing: From the desktop to the exascale. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 377(2142), 20180355 https://doi.org/10.1098/rsta.2018.0355
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Huber, T., Torda, A. E., & van Gunsteren, W. F. (1994). Local elevation: A method for improving the searching properties of molecular dynamics simulation. Journal of Computer-Aided Molecular Design, 8(6), 695–708. https://doi.org/10.1007/BF00124016
  • Inizan, T. J., Célerse, F., Adjoua, O., Ahdab, D. E., Jolly, L.-H., Liu, C., Ren, P., Montes, M., Lagarde, N., Lagardère, L., Monmarché, P., & Piquemal, J.-P. (2021). High-resolution mining of the SARS-CoV-2 main protease conformational space: Supercomputer-driven unsupervised adaptive sampling. Chemical Science, 12(13), 4889–4907. https://doi.org/10.1039/D1SC00145K
  • Ismaili, L., Refouvelet, B., Benchekroun, M., Brogi, S., Brindisi, M., Gemma, S., Campiani, G., Filipic, S., Agbaba, D., Esteban, G., Unzeta, M., Nikolic, K., Butini, S., & Marco-Contelles, J. (2017). Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Progress in Neurobiology, 151, 4–34. https://doi.org/10.1016/j.pneurobio.2015.12.003
  • Jończyk, J., Kukułowicz, J., Łątka, K., Malawska, B., Jung, Y.-S., Musilek, K., & Bajda, M. (2021). Molecular modeling studies on the multistep reactivation process of organophosphate-inhibited acetylcholinesterase and butyrylcholinesterase. Biomolecules, 11(2), 169. https://doi.org/10.3390/biom11020169
  • Kiran, B., Ashwani, K., Manisha, Parvin, K. (2020). Computational studies on acetylcholinesterase inhibitors: From biochemistry to chemistry. Mini-Reviews in Medicinal Chemistry. https://www.eurekaselect.com/177767/article
  • Klimovich, P. V., Shirts, M. R., & Mobley, D. L. (2015). Guidelines for the analysis of free energy calculations. Journal of Computer-Aided Molecular Design, 29(5), 397–411. https://doi.org/10.1007/s10822-015-9840-9
  • Kuhn, M., Firth-Clark, S., Tosco, P., Mey, A. S. J. S., Mackey, M., & Michel, J. (2020). Assessment of binding affinity via alchemical free-energy calculations. Journal of Chemical Information and Modeling, 60(6), 3120–3130. https://doi.org/10.1021/acs.jcim.0c00165
  • Kuhn, B., Guba, W., Hert, J., Banner, D., Bissantz, C., Ceccarelli, S., Haap, W., Körner, M., Kuglstatter, A., Lerner, C., Mattei, P., Neidhart, W., Pinard, E., Rudolph, M. G., Schulz-Gasch, T., Woltering, T., & Stahl, M. (2016). A real-world perspective on molecular design. Journal of Medicinal Chemistry, 59(9), 4087–4102. https://doi.org/10.1021/acs.jmedchem.5b01875
  • Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011–1021. https://doi.org/10.1002/jcc.540130812
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laio, A., & Parrinello, M. (2002). Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12562–12566. https://doi.org/10.1073/pnas.202427399
  • Lawrenz, M., Baron, R., & McCammon, J. A. (2009). Independent-trajectories thermodynamic-integration free-energy changes for biomolecular systems: determinants of H5N1 avian influenza virus neuraminidase inhibition by peramivir. Journal of Chemical Theory and Computation, 5(4), 1106–1116. https://doi.org/10.1021/ct800559d
  • Lazim, R., Suh, D., & Choi, S. (2020). Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. International Journal of Molecular Sciences, 21(17), 6339. https://doi.org/10.3390/ijms21176339
  • Lemkul, J. A., & Bevan, D. R. (2010). Assessing the stability of Alzheimer's amyloid protofibrils using molecular dynamics. The Journal of Physical Chemistry. B, 114(4), 1652–1660. https://doi.org/10.1021/jp9110794
  • Lidmar, J. (2012). Improving the efficiency of extended ensemble simulations: The accelerated weight histogram method. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 85(5 Pt 2), 056708 https://doi.org/10.1103/PhysRevE.85.056708
  • Lindahl, V., Gourdon, P., Andersson, M., & Hess, B. (2018). Permeability and ammonia selectivity in aquaporin TIP2;1: Linking structure to function. Science Reports, 8(1), 2995. https://doi.org/10.1038/s41598-018-21357-2
  • Lindahl, V., Lidmar, J., & Hess, B. (2014). Accelerated weight histogram method for exploring free energy landscapes. Journal of Chemical Physics, 141(4), 044110. https://doi.org/10.1063/1.4890371
  • Lindahl, V., Villa, A., & Hess, B. (2017). Sequence dependency of canonical base pair opening in the DNA double helix. PLOS Computational Biology, 13(4), e1005463. undefined-undefined. https://doi.org/10.1371/journal.pcbi.1005463
  • Londhe, A. M., Gadhe, C. G., Lim, S. M., & Pae, A. N. (2019). Investigation of Molecular Details of Keap1-Nrf2 Inhibitors Using Molecular Dynamics and Umbrella Sampling Techniques. Molecules, 24(22), 4085. https://doi.org/10.3390/molecules24224085
  • Milelli, A., De Simone, A., Ticchi, N., H., Chen, H., Betari, N., Andrisano, V., & Tumiatti, V. (2017). Tacrine-based multifunctional agents in Alzheimer's disease: An old story in continuous development. Current Medicinal Chemistry, 24(32), 3522–3546. https://doi.org/10.2174/0929867324666170309123920
  • Minarini, A., Milelli, A., Simoni, E., Rosini, M., Laura Bolognesi, M., Marchetti, C., & Tumiatti, V. (2013). Multifunctional tacrine derivatives in Alzheimer's disease. Current Topics in Medicinal Chemistry, 13(15), 1771–1786. https://doi.org/10.2174/15680266113139990136
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Nascimento, É. C. M., Oliva, M., Świderek, K., Martins, J. B. L., & Andrés, J. (2017). Binding analysis of some classical acetylcholinesterase inhibitors: insights for a rational design using free energy perturbation method calculations with QM/MM MD simulations. Journal of Chemical Information and Modeling, 57(4), 958–976. https://doi.org/10.1021/acs.jcim.7b00037
  • Nepovimova, E., Svobodova, L., Dolezal, R., Hepnarova, V., Junova, L., Jun, D., Korabecny, J., Kucera, T., Gazova, Z., Motykova, K., Kubackova, J., Bednarikova, Z., Janockova, J., Jesus, C., Cortes, L., Pina, J., Rostohar, D., Serpa, C., Soukup, O., … Kuca, K. (2021). Tacrine – benzothiazoles: Novel class of potential multitarget anti-Alzheimeŕs drugs dealing with cholinergic, amyloid and mitochondrial systems. Bioorganic Chemistry, 107, 104596. https://doi.org/10.1016/j.bioorg.2020.104596
  • Neves, P. A. A., de Silva, E. N., & Beirão, P. S. L. (2017). Microcalorimetric study of acetylcholine and acetylthiocholine hydrolysis by acetylcholinesterase. Advances in Enzyme Research, 5(1), 1–12. https://doi.org/10.4236/aer.2017.51001
  • Pathak, A. K., & Bandyopadhyay, T. (2014). Unbinding free energy of acetylcholinesterase bound oxime drugs along the gorge pathway from metadynamics-umbrella sampling investigation. Proteins, 82(9), 1799–1818. https://doi.org/10.1002/prot.24533
  • Pérez-Benito, L., Keränen, H., van Vlijmen, H., & Tresadern, G. (2018). Predicting Binding Free Energies of PDE2 Inhibitors. The Difficulties of Protein Conformation. Scientific Reports, 8(1), 4883. https://doi.org/10.1038/s41598-018-23039-5
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Ratnasinghe, B. D., Salsbury, A. M., & Lemkul, J. A. (2021). Ion binding to the bcl-2 G-quadruplex from polarizable simulations with the drude force field. Biophysical Journal, 120(3), 222a–223a. https://doi.org/10.1016/j.bpj.2020.11.1489
  • Repasky, M. P., Murphy, R. B., Banks, J. L., Greenwood, J. R., Tubert-Brohman, I., Bhat, S., & Friesner, R. A. (2012). Docking performance of the glide program as evaluated on the Astex and DUD datasets: A complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. Journal of Computer-Aided Molecular Design, 26(6), 787–799. https://doi.org/10.1007/s10822-012-9575-9
  • Rifai, E. A., van Dijk, M., Vermeulen, N. P. E., Yanuar, A., & Geerke, D. P. (2019). A comparative linear interaction energy and MM/PBSA study on SIRT1-ligand binding free energy calculation. Journal of Chemical Information and Modeling, 59(9), 4018–4033. https://doi.org/10.1021/acs.jcim.9b00609
  • Ruyck, J., de Brysbaert, G., Blossey, R., & Lensink, M. F. (2016). Molecular docking as a popular tool in drug design, an in silico travel. Advances and Applications in Bioinformatics and Chemistry: AABC, 9, 1–11. https://doi.org/10.2147/AABC.S105289
  • Rydberg, E. H., Brumshtein, B., Greenblatt, H. M., Wong, D. M., Shaya, D., Williams, L. D., Carlier, P. R., Pang, Y.-P., Silman, I., & Sussman, J. L. (2006). Complexes of alkylene-linked tacrine dimers with torpedo Californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge . Journal of Medicinal Chemistry, 49(18), 5491–5500. https://doi.org/10.1021/jm060164b
  • Sadiq, S. K., Wright, D. W., Kenway, O. A., & Coveney, P. V. (2010). Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases. Journal of Chemical Information and Modeling, 50(5), 890–905. https://doi.org/10.1021/ci100007w
  • Saini, R., & Saxena, A. K. (2019). The Structural hybrids of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease: A review. Alzheimer’s & Neurodegenerative Diseases, 4(1), 1–25. https://doi.org/10.24966/AND-9608/100015
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923. https://doi.org/10.3389/fphar.2018.00923
  • Sanson, B., Colletier, J.-P., Xu, Y., Lang, P. T., Jiang, H., Silman, I., Sussman, J. L., & Weik, M. (2011). Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations. Protein Science, 20(7), 1114–1118. https://doi.org/10.1002/pro.661
  • Santos, L. A., da Cunha, E. F. F., & Ramalho, T. C. (2017). Toward the classical description of halogen bonds: A quantum based generalized empirical potential for fluorine, chlorine, and bromine. The Journal of Physical Chemistry. A, 121(12), 2442–2451. https://doi.org/10.1021/acs.jpca.6b13112
  • Schindler, C. E. M., Baumann, H., Blum, A., Böse, D., Buchstaller, H.-P., Burgdorf, L., Cappel, D., Chekler, E., Czodrowski, P., Dorsch, D., Eguida, M. K. I., Follows, B., Fuchß, T., Grädler, U., Gunera, J., Johnson, T., Jorand Lebrun, C., Karra, S., Klein, M., … Kuhn, D. (2020). Large-scale assessment of binding free energy calculations in active drug discovery projects. Journal of Chemical Information and Modeling, 60(11), 5457–5474. https://doi.org/10.1021/acs.jcim.0c00900
  • Shen, T., Tai, K., Henchman, R. H., & McCammon, J. A. (2002). Molecular dynamics of Acetylcholinesterase. Accounts of Chemical Research, 35(6), 332–340. https://doi.org/10.1021/ar010025i
  • Shirts, M. R., Mobley, D. L., & Chodera, J. D. (2007). Chapter 4 Alchemical free energy calculations: Ready for prime time? In D. C. Spellmeyer & R. Wheeler (Eds.), Annual reports in computational chemistry (Vol. 3, pp. 41–59). Elsevier. https://doi.org/10.1016/S1574-1400(07)03004-6
  • Shirts, M. R., Mobley, D. L., Chodera, J. D., & Pande, V. S. (2007). Accurate and efficient corrections for missing dispersion interactions in molecular simulations. The Journal of Physical Chemistry. B, 111(45), 13052–13063. https://doi.org/10.1021/jp0735987
  • Singh, N., Villoutreix, B. O., & Ecker, G. F. (2019). Rigorous sampling of docking poses unveils binding hypothesis for the halogenated ligands of L-type amino acid transporter 1 (LAT1). Scientific Reports, 9(1), 15061. https://doi.org/10.1038/s41598-019-51455-8
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Velan, B., Barak, D., Ariel, N., Leitner, M., Bino, T., Ordentlich, A., & Shafferman, A. (1996). Structural modifications of the Ω loop in human acetylcholinesterase. FEBS Letters, 395(1), 22–28. https://doi.org/10.1016/0014-5793(96)00995-7
  • Viayna, E., Coquelle, N., Cieslikiewicz-Bouet, M., Cisternas, P., Oliva, C. A., Sánchez-López, E., Ettcheto, M., Bartolini, M., De Simone, A., Ricchini, M., Rendina, M., Pons, M., Firuzi, O., Pérez, B., Saso, L., Andrisano, V., Nachon, F., Brazzolotto, X., García, M. L., … Muñoz-Torrero, D. (2021). Discovery of a potent dual inhibitor of acetylcholinesterase and butyrylcholinesterase with antioxidant activity that alleviates Alzheimer-like pathology in old APP/PS1 mice. Journal of Medicinal Chemistry, 64(1), 812–839. https://doi.org/10.1021/acs.jmedchem.0c01775
  • Vitorović-Todorović, M., Cvijetić, I., Zloh, M., & Perdih, A. (2020). Molecular recognition of acetylcholinesterase and its subnanomolar reversible inhibitor: A molecular simulations study. Journal of Biomolecular Structure and Dynamics, 0(0), 1–21. https://doi.org/10.1080/07391102.2020.1831960
  • Wan, S., Bhati, A. P., Zasada, S. J., & Coveney, P. V. (2020). Rapid, accurate, precise and reproducible ligand-protein binding free energy prediction. Interface Focus, 10(6), 20200007. https://doi.org/10.1098/rsfs.2020.0007
  • Wan, S., & Coveney, P. V. (2011). Rapid and accurate ranking of binding affinities of epidermal growth factor receptor sequences with selected lung cancer drugs. Journal of the Royal Society, Interface, 8(61), 1114–1127. https://doi.org/10.1098/rsif.2010.0609
  • Wang, F., & Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters, 86(10), 2050–2053. https://doi.org/10.1103/PhysRevLett.86.2050
  • Wan, S., Knapp, B., Wright, D. W., Deane, C. M., & Coveney, P. V. (2015). Rapid, precise, and reproducible prediction of peptide-MHC binding affinities from molecular dynamics that correlate well with experiment. Journal of Chemical Theory and Computation, 11(7), 3346–3356. https://doi.org/10.1021/acs.jctc.5b00179
  • Watkins, P. B., Zimmerman, H. J., Knapp, M. J., Gracon, S. I., & Lewis, K. W. (1994). Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA, 271(13), 992–998. https://doi.org/10.1001/jama.1994.03510370044030
  • Wright, D. W., Hall, B. A., Kenway, O. A., Jha, S., & Coveney, P. V. (2014). Computing clinically relevant binding free energies of HIV-1 protease inhibitors. Journal of Chemical Theory and Computation, 10(3), 1228–1241. https://doi.org/10.1021/ct4007037
  • Xiao, H., Irene, M., Alessandro, C. (2019). Advances in the treatment of explicit water molecules in docking and binding free energy calculations. Current Medicinal Chemistry. https://www.eurekaselect.com/162094/article
  • Xu, Y., Cheng, S., Sussman, J. L., Silman, I., & Jiang, H. (2017). Computational studies on acetylcholinesterases. Molecules, 22(8), 1324. https://doi.org/10.3390/molecules22081324
  • Xu, Y., Colletier, J.-P., Weik, M., Jiang, H., Moult, J., Silman, I., & Sussman, J. L. (2008). Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophysical Journal, 95(5), 2500–2511. https://doi.org/10.1529/biophysj.108.129601
  • Yusufzai, S. K., Khan, M. S., Sulaiman, O., Osman, H., & Lamjin, D. N. (2018). Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chemistry Central Journal, 12(1), 128. https://doi.org/10.1186/s13065-018-0497-z
  • Zawada, K., Czarnecka, K., Girek, M., Kręcisz, P., Trejtnar, F., Mandíková, J., Jończyk, J., Bajda, M., Staśkiewicz, M., Wójtowicz, P., Dziubek, K., Skibiński, R., & Szymański, P. (2021). New hybrids of tacrine and indomethacin as multifunctional acetylcholinesterase inhibitors. Chemical Papers, 75(1), 249–264. https://doi.org/10.1007/s11696-020-01295-y
  • Zdarova Karasova, J., Mzik, M., Kucera, T., Vecera, Z., Kassa, J., & Sestak, V. (2020). Interaction of Cucurbit[7]uril with Oxime K027, atropine, and paraoxon: Risky or advantageous delivery system? International Journal of Molecular Sciences, 21(21), 7883. https://doi.org/10.3390/ijms21217883

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.