226
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the antileishmanial activity of N1,N2-disubstituted-benzoylguanidines: synthesis and molecular modeling studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 11495-11510 | Received 09 Jan 2021, Accepted 19 Jul 2021, Published online: 06 Aug 2021

References

  • Åkerbladh, L., Schembri, L. S., Larhed, M., & Odell, L. R. (2017). Palladium(0)-catalyzed carbonylative one-pot synthesis of N-acylguanidines. The Journal of Organic Chemistry, 82(23), 12520–12529. https://doi.org/10.1021/acs.joc.7b02294
  • Alonso-Moreno, C., Antiñolo, A., Carrillo-Hermosilla, F., & Otero, A. (2014). Guanidines: From classical approaches to efficient catalytic syntheses. Chemical Society Reviews, 43(10), 3406–3425. https://doi.org/10.1039/c4cs00013g
  • Arafa, R. K., Wenzler, T., Brun, R., Chai, Y., & David Wilson, W. (2011). Molecular modeling study and synthesis of novel dicationic flexible triaryl guanidines and imidamides as antiprotozoal agents. European Journal of Medicinal Chemistry, 46(12), 5852–5860. https://doi.org/10.1016/j.ejmech.2011.09.047
  • Armarego, W. L. F. (2017). Purification of laboratory chemicals (8th ed.). Butterworth-Heinemann.
  • Berlinck, R. G. S., Trindade-Silva, A. E., & Santos, M. F. C. (2012). The chemistry and biology of organic guanidine derivatives. Natural Product Reports, 29(12), 1382–1406. https://doi.org/10.1039/c2np20071f
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), W252–W258. https://doi.org/10.1093/nar/gku340
  • Bortoleti, B. T d S., Gonçalves, M. D., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Assolini, J. P., Carloto, A. C. M., de Carvalho, P. G. C., Cardoso, I. L. A., Simão, A. N. C., Arakawa, N. S., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2018). Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity. Phytomedicine, 46, 11–20. https://doi.org/10.1016/j.phymed.2018.06.010
  • Bortoleti, B. T d S., Tomiotto-Pellissier, F., Gonçalves, M. D., Miranda-Sapla, M. M., Assolini, J. P., Carloto, A. C., Lima, D. M., Silveira, G. F., Almeida, R. S., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2019). Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability. Phytomedicine, 57, 262–270. https://doi.org/10.1016/j.phymed.2018.12.035
  • Brito, T. O., Souza, A. X., Mota, Y. C. C., Morais, V. S. S., de Souza, L. T., de Fátima, Â., Macedo, F., & Modolo, L. V. (2015). Design, syntheses and evaluation of benzoylthioureas as urease inhibitors of agricultural interest. RSC Advances, 5(55), 44507–44515. https://doi.org/10.1039/C5RA07886E
  • Brożewicz, K., & Sławiński, J. (2012). 1-(2-Mercaptobenzenesulfonyl)-3-hydroxyguanidines – Novel potent antiproliferatives, synthesis and in vitro biological activity. European Journal of Medicinal Chemistry, 55, 384–394. https://doi.org/10.1016/j.ejmech.2012.07.042
  • Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. Lancet (London, England), 392(10151), 951–970. https://doi.org/10.1016/S0140-6736(18)31204-2
  • Caridha, D., Vesely, B., van Bocxlaer, K., Arana, B., Mowbray, C. E., Rafati, S., Uliana, S., Reguera, R., Kreishman-Deitrick, M., Sciotti, R., Buffet, P., & Croft, S. L. (2019). Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. International Journal for Parasitology. Drugs and Drug Resistance, 11, 106–117. https://doi.org/10.1016/j.ijpddr.2019.06.003
  • Cheng, T.-J. R., Weinheimer, S., Tarbet, E. B., Jan, J.-T., Cheng, Y.-S. E., Shie, J.-J., Chen, C.-L., Chen, C.-A., Hsieh, W.-C., Huang, P.-W., Lin, W.-H., Wang, S.-Y., Fang, J.-M., Hu, O. Y.-P., & Wong, C.-H. (2012). Development of oseltamivir phosphonate congeners as anti-influenza agents. Journal of Medicinal Chemistry, 55(20), 8657–8670. https://doi.org/10.1021/jm3008486
  • Costa, M. S., Gonçalves, Y. G., Teixeira, S. C., Nunes, D. C d O., Lopes, D. S., da Silva, C. V., da Silva, M. S., Borges, B. C., Silva, M. J. B., Rodrigues, R. S., de Rodrigues, V. M., Von Poelhsitz, G., & Yoneyama, K. A. G. (2019). Increased ROS generation causes apoptosis-like death: Mechanistic insights into the anti-Leishmania activity of a potent ruthenium(II) complex. Journal of Inorganic Biochemistry, 195, 1–12. https://doi.org/10.1016/j.jinorgbio.2019.03.005
  • Coxon, G. D., Furman, B. L., Harvey, A. L., McTavish, J., Mooney, M. H., Arastoo, M., Kennedy, A. R., Tettey, J. M., & Waigh, R. D. (2009). Benzylguanidines and other galegine analogues inducing weight loss in mice. Journal of Medicinal Chemistry, 52(11), 3457–3463. https://doi.org/10.1021/jm8011933
  • Croft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical Microbiology Reviews, 19(1), 111–126. https://doi.org/10.1128/CMR.19.1.111-126.2006
  • Cunha, S., & Rodrigues, M. T. (2006). The first bismuth(III)-catalyzed guanylation of thioureas. Tetrahedron Letters, 47(39), 6955–6956. https://doi.org/10.1016/j.tetlet.2006.07.138
  • Cusmano, Sigismondo, & Ruccia, M. (1955). Nitrosoimidazoles. IV. The action of 4(or 5)-nitroso-2,5(or 4)-diphenylimidazole. Gazzetta Chimica Italiana, 85, 1686–1697.
  • D’Antonio, E. L., Ullman, B., Roberts, S. C., Dixit, U. G., Wilson, M. E., Hai, Y., & Christianson, D. W. (2013). Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Archives of Biochemistry and Biophysics, 535(2), 163–176. https://doi.org/10.1016/j.abb.2013.03.015
  • da Silva, E. R., Castilho, T. M., Pioker, F. C., Tomich de Paula Silva, C. H., & Floeter-Winter, L. M. (2002). Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. International Journal for Parasitology, 32(6), 727–737. https://doi.org/10.1016/S0020-7519(02)00002-4
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • do Espírito Santo, R. D., Velásquez, Á. M. A., Passianoto, L. V. G., Sepulveda, A. A. L., da Costa Clementino, L., Assis, R. P., Baviera, A. M., Kalaba, P., dos Santos, F. N., Éberlin, M. N., da Silva, G. V. J., Zehl, M., Lubec, G., Graminha, M. A. S., & González, E. R. P. (2019). N, N′, N″-trisubstituted guanidines: Synthesis, characterization and evaluation of their leishmanicidal activity. European Journal of Medicinal Chemistry, 171, 116–128. https://doi.org/10.1016/j.ejmech.2019.03.032
  • El-Demerdash, A., Atanasov, A., Bishayee, A., Abdel-Mogib, M., Hooper, J., & Al-Mourabit, A. (1975). Batzella, crambe and monanchora: Highly prolific marine sponge genera yielding compounds with potential applications for cancer and other therapeutic areas. Biochemical Pharmacology, 24(17), 1639–1641. https://doi.org/10.3390/nu10010033
  • Espirito Santo, R., Machado, M., Santos, J., Gonzalez, E., & Chin, C. (2014). Use of guanidine compounds in the treatment of neglected tropical diseases. Current Organic Chemistry, 18(20), 2572–2602. https://doi.org/10.2174/138527281820141028104429
  • Evans, D. A. (2014). History of the Harvard ChemDraw Project. Angewandte Chemie (International ed. in English), 53(42), 11140–11145. https://doi.org/10.1002/anie.201405820
  • Fang, F. C. (2004). Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nature Reviews. Microbiology, 2(10), 820–832. https://doi.org/10.1038/nrmicro1004
  • Fanti, J. R., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Cataneo, A. H. D., Andrade, C. G. T., de, J., Panis, C., Rodrigues, J. H., da, S., Wowk, P. F., Kuczera, D., Costa, I. N., Nakamura, C. V., Nakazato, G., Durán, N., Pavanelli, W. R., & Conchon-Costa, I. (2018). Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Tropica, 178, 46–54. https://doi.org/10.1016/j.actatropica.2017.10.027
  • Fidalgo, L. M., & Gille, L. (2011). Mitochondria and trypanosomatids: Targets and drugs. Pharmaceutical Research, 28(11), 2758–2770. https://doi.org/10.1007/s11095-011-0586-3
  • Finch, A., & Pillans, P. (2014). P-glycoprotein and its role in drug-drug interactions. Australian Prescriber, 37(4), 137–139. https://doi.org/10.18773/austprescr.2014.050
  • Gao, Z., Chen, Y., Cai, X., & Xu, R. (2016). Predict drug permeability to blood–brain-barrier from clinical phenotypes: Drug side effects and drug indications. Bioinformatics, 33(6), 901–908. https://doi.org/10.1093/bioinformatics/btw713
  • Giulianotti, M. A., Vesely, B. A., Azhari, A., Souza, A., LaVoi, T., Houghten, R. A., Kyle, D. E., & Leahy, J. W. (2017). Identification of a hit series of antileishmanial compounds through the use of mixture-based libraries. ACS Medicinal Chemistry Letters, 8(8), 802–807. https://doi.org/10.1021/acsmedchemlett.7b00045
  • Gomez, M. A., Contreras, I., Halle, M., Tremblay, M. L., McMaster, R. W., & Olivier, M. (2009). Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Science Signaling, 2(90), ra58. https://doi.org/10.1126/scisignal.2000213
  • Gonçalves, M. D., Bortoleti, B. T. S., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Assolini, J. P., Carloto, A. C. M., Carvalho, P. G. C., Tudisco, E. T., Urbano, A., Ambrósio, S. R., Hirooka, E. Y., Simão, A. N. C., Costa, I. N., Pavanelli, W. R., Conchon-Costa, I., & Arakawa, N. S. (2018). Dehydroabietic acid isolated from Pinus elliottii exerts in vitro antileishmanial action by pro-oxidant effect, inducing ROS production in promastigote and downregulating Nrf2/ferritin expression in amastigote forms of Leishmania amazonensis. Fitoterapia, 128, 224–232. https://doi.org/10.1016/j.fitote.2018.05.027
  • Gonzalez, J. L., Stephens, C. E., Wenzler, T., Brun, R., Tanious, F. A., Wilson, W. D., Barszcz, T., Werbovetz, K. A., & Boykin, D. W. (2007). Synthesis and antiparasitic evaluation of bis-2,5-[4-guanidinophenyl]thiophenes. European Journal of Medicinal Chemistry, 42(4), 552–557. https://doi.org/10.1016/j.ejmech.2006.11.006
  • Gopinath, V. S., Rao, M., Shivahare, R., Vishwakarma, P., Ghose, S., Pradhan, A., Hindupur, R., Sarma, K. D., Gupta, S., Puri, S. K., Launay, D., & Martin, D. (2014). Design, synthesis, ADME characterization and antileishmanial evaluation of novel substituted quinoline analogs. Bioorganic & Medicinal Chemistry Letters, 24(9), 2046–2052. https://doi.org/10.1016/j.bmcl.2014.03.065
  • Gu, L., Guo, Z., He, L., & Qi, Q. (2013). Synthesis of aroylguanidines by an unexpected demethylation-addition cascade. Synthesis (Stuttg), 45(18), 2533–2544. https://doi.org/10.1055/s-0033-1338511
  • Hibbs, J. B., Taintor, R. R., Vavrin, Z., & Rachlin, E. M. (1988). Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochemical and Biophysical Research Communications, 157(1), 87–94. https://doi.org/10.1016/S0006-291X(88)80015-9
  • Hirsch, E., Ciraolo, E., Ghigo, A., & Costa, C. (2008). Taming the PI3K team to hold inflammation and cancer at bay. Pharmacology & Therapeutics, 118(2), 192–205. https://doi.org/10.1016/j.pharmthera.2008.02.004
  • Horta, M. F., Mendes, B. P., Roma, E. H., Noronha, F. S. M., Macêdo, J. P., Oliveira, L. S., Duarte, M. M., & Vieira, L. Q. (2012). Reactive oxygen species and nitric oxide in cutaneous Leishmaniasis. Journal of Parasitology Research, 2012, 203818. https://doi.org/10.1155/2012/203818
  • Ilari, A., Genovese, I., Fiorillo, F., Battista, T., De Ionna, I., Fiorillo, A., & Colotti, G. (2018). Toward a drug against all kinetoplastids: From LeishBox to specific and potent trypanothione reductase inhibitors. Molecular Pharmaceutics, 15(8), 3069–3078. https://doi.org/10.1021/acs.molpharmaceut.8b00185
  • Iles, K. E., & Forman, H. J. (2002). Macrophage signaling and respiratory burst. Immunologic Research, 26(1–3), 95–106. https://doi.org/10.1385/IR:26:1-3:095
  • Ito, G. (1961). Uber die Synthese von N1-substituierten N3-Acylguanidinen (Vorlaufige Mitt.). Benzoylverbindungen. Chemical and Pharmaceutical Bulletin, 9(3), 245–248. https://doi.org/10.1248/cpb.9.245
  • Katritzky, A. R., & Rogovoy, B. V. (1976). Recent Developments in Guanylating Agents. The American Journal of Clinical Hypnosis, 18(3), 200–203. https://doi.org/10.1002/chin.200530277
  • Kelly, B., & Rozas, I. (2013). Copper(II) chloride promoted transformation of amines into guanidines and asymmetrical N,N′-disubstituted guanidines. Tetrahedron Letters, 54(30), 3982–3984. https://doi.org/10.1016/j.tetlet.2013.05.070
  • Khomutov, M. A., Mandal, S., Weisell, J., Saxena, N., Simonian, A. R., Vepsalainen, J., Madhubala, R., & Kochetkov, S. N. (2010). Novel convenient synthesis of biologically active esters of hydroxylamine. Amino Acids, 38(2), 509–517. https://doi.org/10.1007/s00726-009-0410-0
  • Kim, K. S., & Qian, L. (1993). Improved method for the preparation of guanidines. Tetrahedron Letters, 34(48), 7677–7680. https://doi.org/10.1016/S0040-4039(00)61537-X
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Machado, P. d A., Moraes, J. O. F., Carvalho, G. S. G., Lima, W. P., Macedo, G. C., Britta, E. A., Nakamura, C. V., da Silva, A. D., Cuin, A., & Coimbra, E. S. (2017). VOSalophen: A vanadium complex with a stilbene derivative—Induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis. Journal of Biological Inorganic Chemistry: JBIC, 22(6), 929–939. https://doi.org/10.1007/s00775-017-1471-2
  • Manetti, F., Castagnolo, D., Raffi, F., Zizzari, A. T., Rajamäki, S., D’Arezzo, S., Visca, P., Cona, A., Fracasso, M. E., Doria, D., Posteraro, B., Sanguinetti, M., Fadda, G., & Botta, M. (2009). Synthesis of New Linear Guanidines and Macrocyclic Amidinourea Derivatives Endowed with High Antifungal Activity against Candida spp. and Aspergillus spp. †. Journal of Medicinal Chemistry, 52(23), 7376–7379. https://doi.org/10.1021/jm900760k
  • Martins, L. F., Mesquita, J. T., Pinto, E. G., Costa-Silva, T. A., Borborema, S. E. T., Galisteo Junior, A. J., Neves, B. J., Andrade, C. H., Shuhaib, Z., Al, Bennett, E. L., Black, G. P., Harper, P. M., Evans, D. M., Fituri, H. S., Leyland, J. P., Martin, C., Roberts, T. D., Thornhill, A. J., Vale, S. A., … Tempone, A. G. (2016). Analogues of Marine Guanidine Alkaloids Are in Vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum Intracellular Amastigotes. Journal of Natural Products, 79(9), 2202–2210. https://doi.org/10.1021/acs.jnatprod.6b00256
  • McKeever, C., Kaiser, M., & Rozas, I. (2013). Aminoalkyl derivatives of guanidine diaromatic minor groove binders with antiprotozoal activity. Journal of Medicinal Chemistry, 56(3), 700–711. https://doi.org/10.1021/jm301614w
  • Miranda-Sapla, M. M., Tomiotto-Pellissier, F., Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T d S., Gonçalves, M. D., Tavares, E. R., Rodrigues, J. H d S., Simão, A. N. C., Yamauchi, L. M., Nakamura, C. V., Verri, W. A., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2019). trans-Chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. European Journal of Pharmacology, 853, 275–288. https://doi.org/10.1016/j.ejphar.2019.03.049
  • Mo, S., Krunic, A., Pegan, S. D., Franzblau, S. G., & Orjala, J. (2009). An antimicrobial guanidine-bearing sesterterpene from the cultured cyanobacterium Scytonema sp. Journal of Natural Products, 72(11), 2043–2045. https://doi.org/10.1021/np900288x
  • Monzote, L., & Gille, L. (2010). Mitochondria as a promising antiparasitic target. Current Clinical Pharmacology, 5(1), 55–60. https://doi.org/10.2174/157488410790410605
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Murtaza, G., Badshah, A., Said, M., Khan, H., Khan, A., Khan, S., Siddiq, S., Choudhary, M. I., Boudreau, J., & Fontaine, F.-G. (2011). Urease inhibition and anti-leishmanial assay of substituted benzoylguanidines and their copper(ii) complexes. Dalton Transactions (Cambridge, England: 2003), 40(36), 9202–9211. https://doi.org/10.1039/c1dt10464k
  • Nepali, K., Lee, H.-Y., & Liou, J.-P. (2019). Nitro-group-containing drugs. Journal of Medicinal Chemistry, 62(6), 2851–2893. https://doi.org/10.1021/acs.jmedchem.8b00147
  • O’Donovan, D. H., Kelly, B., Diez-Cecilia, E., Kitson, M., & Rozas, I. (2013). A structural study of N,N′-bis-aryl-N′′-acylguanidines. New Journal of Chemistry, 37(8), 2408. https://doi.org/10.1039/c3nj00285c
  • Ohara, K., Vasseur, J.-J., & Smietana, M. (2009). NIS-promoted guanylation of amines. Tetrahedron Letters, 50(13), 1463–1465. https://doi.org/10.1016/j.tetlet.2009.01.073
  • Olivier, M., Atayde, V. D., Isnard, A., Hassani, K., & Shio, M. T. (2012). Leishmania virulence factors: Focus on the metalloprotease GP63. Microbes and Infection, 14(15), 1377–1389. https://doi.org/10.1016/j.micinf.2012.05.014
  • Pape, S., Wessig, P., & Brunner, H. (2015). A new and environmentally benign synthesis of aroylguanidines using iron trichloride. RSC Advances, 5(123), 101408–101411. https://doi.org/10.1039/C5RA20869F
  • Porcheddu, A., De Luca, L., & Giacomelli, G. (2009). A mild and inexpensive procedure for the synthesis of N,N′-di-boc-protected guanidines. Synlett, 2009, 3368–3372. https://doi.org/10.1055/s-0029-1218365
  • Reigada, C., Sayé, M., Vera, E. V., Balcazar, D., Fraccaroli, L., Carrillo, C., Miranda, M. R., & Pereira, C. A. (2016). Trypanosoma cruzi polyamine transporter: Its role on parasite growth and survival under stress conditions. The Journal of Membrane Biology, 249(4), 475–481. https://doi.org/10.1007/s00232-016-9888-z
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Scariot, D. B., Britta, E. A., Moreira, A. L., Falzirolli, H., Silva, C. C., Ueda-Nakamura, T., Dias-Filho, B. P., & Nakamura, C. V. (2017). Induction of early autophagic process on leishmania amazonensis by synergistic effect of miltefosine and innovative semi-synthetic thiosemicarbazone. Frontiers in Microbiology, 8, 255. https://doi.org/10.3389/fmicb.2017.00255
  • Schlagenhauf, E., Etges, R., & Metcalf, P. (1998). The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Structure (London, England: 1993), 6(8), 1035–1046. https://doi.org/10.1016/S0969-2126(98)00104-X
  • Scott, F. L. (1957). Studies in the pyrazole series. VIII. 1 aminolyses of some 3,5-dimethyl-1-acylguanylpyrazoles. The Journal of Organic Chemistry, 22(12), 1568–1575. https://doi.org/10.1021/jo01363a008
  • Shaw, J. W., Grayson, D. H., & Rozas, I. (2015). Synthesis of guanidines and some of their biological applications. In P. Selig (Ed.), Guanidines as reagents and catalysts I. Topics in heterocyclic chemistry (Vol. 50, pp. 1–51). Springer. https://doi.org/10.1007/7081_2015_174
  • Shibanuma, T., Shiono, M., & Mukaiyama, T. (1978). ChemInform Abstract: A convenient method for the preparation of carbodiimides using 2-chloropyridinium salt. Chem. Informationsd, 9(6), 06161. https://doi.org/10.1002/chin.197806161
  • Smirlis, D., Duszenko, M., Ruiz, A., Scoulica, E., Bastien, P., Fasel, N., & Soteriadou, K. (2010). Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasites & Vectors, 3, 107. https://doi.org/10.1186/1756-3305-3-107
  • Stephens, C. E., Brun, R., Salem, M. M., Werbovetz, K. A., Tanious, F., Wilson, W. D., & Boykin, D. W. (2003). The activity of diguanidino and “reversed” diamidino 2,5-diarylfurans versus Trypanosoma cruzi and Leishmania donovani. Bioorganic & Medicinal Chemistry Letters, 13(12), 2065–2069. https://doi.org/10.1016/S0960-894X(03)00319-6
  • Sundar, S., & Singh, A. (2018). Chemotherapeutics of visceral leishmaniasis: Present and future developments. Parasitology, 145(4), 481–489. https://doi.org/10.1017/S0031182017002116
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tuccinardi, T., Poli, G., Romboli, V., Giordano, A., & Martinelli, A. (2014). Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. Journal of Chemical Information and Modeling, 54(10), 2980–2986. https://doi.org/10.1021/ci500424n
  • vali Shaik, B., Seelam, M., Tamminana, R., & Kammela, P. R. (2017). Efficient copper-promoted tandem multi-component strategy: The synthesis of 1-Aryl/Alkyl-5-(N-benzoylamino) tetrazoles and guanidine’s. Organic & Biomolecular Chemistry, 15(39), 8410–11525. https://doi.org/10.1002/slct.201702568
  • Van Booven, D., Marsh, S., McLeod, H., Carrillo, M. W., Sangkuhl, K., Klein, T. E., & Altman, R. B. (2010). Cytochrome P450 2C9-CYP2C9. Pharmacogenetics and Genomics, 20(4), 277–281. https://doi.org/10.1097/FPC.0b013e3283349e84
  • Vannier-Santos, M. A., Menezes, D., Oliveira, M. F., & de Mello, F. G. (2008). The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in Leishmania amazonensis. Microbiology, 154(10), 3104–3111. https://doi.org/10.1099/mic.0.2007/013896-0
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • World Health Organization. (2021). Trypanosomiasis, human African (sleeping sickness) [WWW Document]. https://www.who.int/en/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
  • Zhang, W.-X., Xu, L., & Xi, Z. (2015). Recent development of synthetic preparation methods for guanidines via transition metal catalysis. Chemical Communications (Cambridge, England), 51(2), 254–265. https://doi.org/10.1039/c4cc05291a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.