240
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Flavan-based phytoconstituents inhibit Mpro, a SARS-COV-2 molecular target, in silico

, , , , , & show all
Pages 11545-11559 | Received 12 Nov 2020, Accepted 20 Jul 2021, Published online: 04 Aug 2021

References

  • Adianti, M., Aoki, C., Komoto, M., Deng, L., Shoji, I., Wahyuni, T. S., Lusida, M. I., Soetjipto, Fuchino, H., Kawahara, N., & Hotta, H. (2014). Antihepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol Immunol, 58(3), 180–187. https://doi.org/10.1111/1348-0421.12127
  • Akerele, O. (1993). Nature's medicinal bounty: Don't throw it away. World Health Forum 1993, 14(4), 390–395.
  • Allen, M. P., & Tildesley, D. J. (1989). Computer simulation of liquids. Clarendon Press.
  • Alzaabi, M. M., Hamdy, R., Ashmawy, N. S., Hamoda, A. M., Alkhayat, F., Khademi, N. N., Al Joud S. M. A., El-Keblawy A. A., Soliman, S. S. M. (2021). Flavonoids are promising safe therapy against COVID-19. Phytochemistry Reviews: proceedings of the Phytochemical Society of Europe, 1–22. https://doi.org/10.1007/s11101-021-09759-z
  • Amblard, F., Govindarajan, B., Lefkove, B., Rapp, K. L., Detorio, M., Arbiser, J. L., & Schinazi, R. F. (2007). Synthesis, cytotoxicity, and antiviral activities of new neolignans related to honokiol and magnolol. Bioorganic & Medicinal Chemistry Letters, 17(16), 4428–4431. https://doi.org/10.1016/j.bmcl.2007.06.024
  • Arthikasree, A., Roslin Elsa, V., Saranya, S., & Gayathri, D. (2020). Anti Hepatitis C virus drugs show potential drug repositioning for SARS CoV-2 main protease: An in silico study. Research Square. https://doi.org/10.21203/rs.3.rs-26489/v1
  • Athanasiadis, E., Cournia, Z., & Spyrou, G. (2012). ChemBioServer: A web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics (Oxford, England), 28(22), 3002–3003. https://doi.org/10.1093/bioinformatics/bts551
  • Bafna, K., Krug, R. M., & Montelione, G. T. (2020). Structural similarity of SARS-CoV2 M(pro) and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics. ChemRxiv: The Preprint Server for Chemistry. https://doi.org/10.26434/chemrxiv.12153615
  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics (Oxford, England), 27(11), 1575–1577. https://doi.org/10.1093/bioinformatics/btr168
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Buckwold, V., Wilson, R., Nalca, A., Beer, B., Voss, T., Turpin, J., Buckheit, R., Wei, J., Wenzelmathers, M., & Walton, E. (2004). Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Research, 61(1), 57–62. https://doi.org/10.1016/S0166-3542(03)00155-4
  • Buonaguro, L., & Buonaguro, F. M. (2020). Knowledge-based repositioning of the anti-HCV direct antiviral agent Sofosbuvir as SARS-CoV-2 treatment. Infectious Agents and Cancer, 15, 32. https://doi.org/10.1186/s13027-020-00302-x
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Choy, Y. B., & Prausnitz, M. R. (2011). The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharmaceutical Research, 28(5), 943–948. https://doi.org/10.1007/s11095-010-0292-6
  • Chung, C.-Y., Liu, C.-H., Burnouf, T., Wang, G.-H., Chang, S.-P., Jassey, A., Tai, C.-J., Tai, C.-J., Huang, C.-J., Richardson, C. D., Yen, M.-H., Lin, C.-C., & Lin, L.-T. (2016). Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Research, 130, 58–68. https://doi.org/10.1016/j.antiviral.2016.03.012
  • Craig, W. J. (1999). Health-promoting properties of common herbs. The American Journal of Clinical Nutrition, 70(3 Suppl), 491S–499S. https://doi.org/10.1093/ajcn/70.3.491s
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • DeGoey, D. A., Chen, H. J., Cox, P. B., & Wendt, M. D. (2018). Beyond the rule of 5: Lessons learned from AbbVie's drugs and compound collection. Journal of Medicinal Chemistry, 61(7), 2636–2651. https://doi.org/10.1021/acs.jmedchem.7b00717
  • Djoumbou Feunang, Y., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., Bolton, E., Greiner, R., & Wishart, D. S. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8, 61. https://doi.org/10.1186/s13321-016-0174-y
  • Esimone, C. O., Eck, G., Nworu, C. S., Hoffmann, D., Überla, K., & Proksch, P. (2010). Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro. Phytomedicine, 17(7), 540–547. https://doi.org/10.1016/j.phymed.2009.10.015
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - An in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12), 4362–4313. https://doi.org/10.1080/071102.2020.1779818
  • Grest, G. S., & Kremer, K. (1986). Molecular dynamics simulation for polymers in the presence of a heat bath. Physical Review. A, General Physics, 33(5), 3628–3631. https://doi.org/10.1103/PhysRevA.33.3628
  • Gul, S., Ozcan, O., Asar, S., Okyar, A., Barıs, I., & Kavakli, I. H. (2020). In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNA-dependent RNA polymerase inhibitors for direct use in clinical trials. Journal of Biomolecular Structure & Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1802346
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6 < 490::AID-JCC1 > 3.0.CO;2-P
  • Hassandarvish, P., Rothan, H. A., Rezaei, S., Yusof, R., Abubakar, S., & Zandi, K. (2016). In silico study on baicalein and baicalin as inhibitors of dengue virus replication. RSC Advances, 6(37), 31235–31247. https://doi.org/10.1039/C6RA00817H
  • Haug, E. J., Arora, J. S., & Matsui, K. (1976). A steepest-descent method for optimization of mechanical systems. Journal of Optimization Theory and Applications, 19(3), 401–424. https://doi.org/10.1007/BF00941484
  • Hilgenfeld, R. (2014). From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS Journal, 281(18), 4085–4096. https://doi.org/10.1111/febs.12936
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ikeda, K., Tsujimoto, K., Uozaki, M., Nishide, M., Suzuki, Y., Koyama, A. H., & Yamasaki, H. (2011). Inhibition of multiplication of herpes simplex virus by caffeic acid. International Journal of Molecular Medicine, 28(4), 595–598. https://doi.org/10.3892/ijmm.2011.739
  • Israelow, B., Song, E., Mao, T., Lu, P., Meir, A., Liu, F., Alfajaro, M. M., Wei, J., Dong, H., Homer, R. J., Ring, A., Wilen, C. B., & Iwasaki, A. (2020). Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. The Journal of Experimental Medicine, 217(12), e20201241. https://doi.org/10.1084/jem.20201241
  • Jannat, K., Hasan, A., Mahamud, R., Jahan, R., Bondhon, T. A., & Farzana, B.-n. (2020). In silico screening of Vigna radiata and Vigna mungo phytochemicals for their binding affinity to SARS-CoV-2 (COVID-19) main protease (3CLpro). Journal of Medicinal Plants Studies, 8(4), 89–95.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors . Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaihatsu, K., Yamabe, M., & Ebara, Y. (2018). Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 23(10), 2475 https://doi.org/10.3390/molecules23102475
  • Keum, Y.-S., Lee, J. M., Yu, M.-S., Chin, Y.-W., & Jeong, Y.-J., (2013). Inhibition of SARS coronavirus helicase by baicalein. Bulletin of the Korean Chemical Society, 34(11), 3187–3188. J. B. o. t. K. C. S. https://doi.org/10.5012/bkcs.2013.34.11.3187
  • Kim, H. J., Yu, Y. G., Park, H., & Lee, Y. S. (2002). HIV gp41 binding phenolic components from Fraxinus sieboldiana var. angustata. Planta Medica, 68(11), 1034–1036. https://doi.org/10.1055/s-2002-35665
  • Kong, Y., Han, J., Wu, X., Zeng, H., Liu, J., & Zhang, H. (2020). VEGF-D: A novel biomarker for detection of COVID-19 progression. Critical Care (London, England), 24(1), 373. https://doi.org/10.1186/s13054-020-03079-y
  • Laskar, M. A., & Choudhury, M. D. (2020). Search for therapeutics against COVID 19 targeting SARS-CoV-2 papain-like protease: An in silico study. Research Square. https://doi.org/10.21203/rs.3.rs-33294/v1
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • LeCher, J. C., Diep, N., Krug, P. W., & Hilliard, J. K. (2019). Genistein has antiviral activity against Herpes B Virus and acts synergistically with antiviral treatments to reduce effective Dose. Viruses, 11(6), 499 https://doi.org/10.3390/v11060499
  • Likhitwitayawuid, K., Sritularak, B., Benchanak, K., Lipipun, V., Mathew, J., & Schinazi, R. F. (2005). Phenolics with antiviral activity from Millettia Erythrocalyx and Artocarpus Lakoocha. Natural Product Research, 19(2), 177–182. https://doi.org/10.1080/14786410410001704813
  • Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. https://doi.org/10.1016/j.addr.2016.04.029
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mariño, Z., Crespo, G., D’Amato, M., Brambilla, N., Giacovelli, G., Rovati, L., Costa, J., Navasa, M., & Forns, X. (2013). Intravenous silibinin monotherapy shows significant antiviral activity in HCV-infected patients in the peri-transplantation period. Journal of Hepatology, 58(3), 415–420. https://doi.org/10.1016/j.jhep.2012.09.034
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mitrocotsa, D., Mitaku, S., Axarlis, S., Harvala, C., & Malamas, M. (2000). Evaluation of the antiviral activity of kaempferol and its glycosides against human cytomegalovirus. Planta Medica, 66(4), 377–379. https://doi.org/10.1055/s-2000-8550
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, Chapter 8, Unit 8.14. https://doi.org/10.1002/0471250953.bi0814s24
  • Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., & Grünweller, A. (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 150, 123–129. https://doi.org/10.1016/j.antiviral.2017.12.010
  • Nguyen, H., Swails, J., Roe, D. R. & Cody, (2017). Amber-MD/pytraj: V 2. Version, 0.0, v2.0.0. Zenodo. https://doi.org/10.5281/zenodo.439134
  • Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49(4), 396–402. https://doi.org/10.3109/13880209.2010.519390
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1–3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Qian, S., Fan, W., Qian, P., Zhang, D., Wei, Y., Chen, H., & Li, X. (2015). Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses, 7(4), 1613–1626. https://doi.org/10.3390/v7041613
  • Richter, M., Boldescu, V., Graf, D., Streicher, F., Dimoglo, A., Bartenschlager, R., & Klein, C. D. (2019). Synthesis, biological evaluation, and molecular docking of combretastatin and colchicine derivatives and their hCE1‐activated prodrugs as antiviral agents. ChemMedChem., 14(4), 469–483. https://doi.org/10.1002/cmdc.201800641
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Shultz, M. D. (2019). Two decades under the influence of the rule of five and the changing properties of approved oral drugs. Journal of Medicinal Chemistry, 62(4), 1701–1714. https://doi.org/10.1021/acs.jmedchem.8b00686
  • Su, H.-X., Yao, S., Zhao, W.-F., Li, M.-J., Liu, J., Shang, W.-J., Xie, H., Ke, C.-Q., Hu, H.-C., Gao, M.-N., Yu, K.-Q., Liu, H., Shen, J.-S., Tang, W., Zhang, L.-K., Xiao, G.-F., Ni, L., Wang, D.-W., Zuo, J.-P., … Xu, Y.-C. (2020). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 41(9), 1167–1177. https://doi.org/10.1038/s41401-020-0483-6
  • Tahir Ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, G.-F., Shi, L.-P., Ren, Y.-D., Liu, Q.-F., Liu, H.-F., Zhang, R.-J., Li, Z., Zhu, F.-H., He, P.-L., Tang, W., Tao, P.-Z., Li, C., Zhao, W.-M., & Zuo, J.-P. (2009). Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research, 83(2), 186–190. https://doi.org/10.1016/j.antiviral.2009.05.002
  • Wang, P., Li, L.-F., Wang, Q.-Y., Shang, L.-Q., Shi, P.-Y., & Yin, Z. (2014). Anti-dengue-virus activity and structure-activity relationship studies of lycorine derivatives. ChemMedChem., 9(7), 1522–1533. https://doi.org/10.1002/cmdc.201300505
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., & Yang, J. (2015). Quercetin as an antiviral agent inhibits Influenza A Virus (IAV) Entry. Viruses, 8(1), 6. https://doi.org/10.3390/v8010006
  • Yu, M.-S., Lee, J., Lee, J. M., Kim, Y., Chin, Y.-W., Jee, J.-G., Keum, Y.-S., & Jeong, Y.-J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters, 22(12), 4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081
  • Zandi, K., Teoh, B.-T., Sam, S.-S., Wong, P.-F., Mustafa, M., & AbuBakar, S. (2011). Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology Journal, 8(1), 560. https://doi.org/10.1186/1743-422X-8-560
  • Zhang, X.-J., Wang, R.-R., Chen, H., Luo, R.-H., Yang, L.-M., Liu, J.-P., Sun, H.-D., Zhang, H.-B., Xiao, W.-L., & Zheng, Y.-T. (2018). SJP-L-5 inhibits HIV-1 polypurine tract primed plus-strand DNA elongation, indicating viral DNA synthesis initiation at multiple sites under drug pressure. Scientific Reports, 8(1), 2574. https://doi.org/10.1038/s41598-018-20954-5
  • Zhu, Y., & Xie, D.-Y. (2020). Docking characterization and in vitro inhibitory activity of Flavan-3-ols and dimeric proanthocyanidins against the main protease activity of SARS-Cov-2. Frontiers in Plant Science, 11, 601316. https://doi.org/10.3389/fpls.2020.601316

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.