254
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico investigations of some Cyperus rotundus compounds as potential anti-inflammatory inhibitors of 5-LO and LTA4H enzymes

, , ORCID Icon, , , & show all
Pages 11571-11586 | Received 14 Nov 2020, Accepted 21 Jul 2021, Published online: 06 Aug 2021

References

  • Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.). Allured Publishing Corporation.
  • Ain, Q. U., Méndez-Lucio, O., Ciriano, I. C., Malliavin, T., van Westen, G. J., & Bender, A. (2014). Modelling ligand selectivity of serine proteases using integrative proteochemometric approaches improves model performance and allows the multi-target dependent interpretation of features. Integrative Biology: Quantitative Biosciences from Nano to Macro, 6(11), 1023–1033. https://doi.org/10.1039/c4ib00175c
  • Aqil, M., Ahad, A., Sultana, Y., & Ali, A. (2007). Status of terpenes as skin penetration enhancers. Drug Discovery Today, 12(23–24), 1061–1067. https://doi.org/10.1016/j.drudis.2007.09.001
  • Askonas, L. J., Kachur, J. F., Villani-Price, D., Liang, C. D. D., Russell, M. A., & Smith, W. G. (2002). Pharmacological characterization of SC-57461A (3-[methyl[3-[4-(phenylmethyl)phenoxy]propyl]amino]propanoic acid HCl), a potent and selective inhibitor of leukotriene A(4) hydrolase I: In vitro studies. The Journal of Pharmacology and Experimental Therapeutics, 300(2), 577–582. https://doi.org/10.1124/jpet.300.2.577
  • Atkins, P. B., Dube, L. M., Walton-Bowen, K., Cameron, C. M., & Kasten, L. E. (2007). Clinical pattern of zileuton-associated liver injury: Results of a 12-month study in patients with chronic asthma. Drug Safety, 30(9), 805–815. https://doi.org/10.2165/00002018-200730090-00006
  • Badria, F. A., El-Naggar, M. H., Abdel Bar, F. M., & Amer, M. M. (2014). New gingerol derivative and other related compounds from Zingiber officinale. Journal of Drug Discovery and Therapeutics, 2, 53–59.
  • Ballester, P. J., & Mitchell, J. B. (2010). A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics (Oxford, England), 26(9), 1169–1175. https://doi.org/10.1093/bioinformatics/btq112
  • Barnes, P. J., & Adcock, I. M. (2003). How do corticosteroids work in asthma? Annals of Internal Medicine, 139(5 Pt 1), 359–370. https://doi.org/10.7326/0003-4819-139-5_part_1-200309020-00012
  • Barnes, P. J., Chung, K. F., & Clive, P. (1998). Inflammatory mediators of asthma: An update. Pharmacol Revew, 50, 515–596.
  • Bhatt, L., Roinestad, K., Van, T., & Springman, E. B. (2017). Recent advances in clinical development of leukotriene B4 pathway drugs. Seminars in Immunology, 33, 65–73. https://doi.org/10.1016/j.smim.2017.08.007
  • Blomster, M., Wetterholm, A., Mueller, M. J., & Haeggström, J. Z. (1995). Evidence for a catalytic role of tyrosine 383 in the peptidase reaction of leukotriene A4 hydrolase. European Journal of Biochemistry, 231(3), 528–534. https://doi.org/10.1111/j.1432-1033.1995.0528d.x
  • Bolton, E., Wang, Y., Thiessen, P. A., & Bryant, S. H. (2008). PubChem: Integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry, 4, 217–241.
  • Bonnier, G., & Cypéracées, D. R. (1990). La grande flore en couleur, Belin (Belin editions, pp. 1198–1199). Paris/INRA.
  • Boudreau, L. H., Lassalle-Claux, G., Cormier, M., Blanchard, S., Doucet, M. S., Surette, M. E., & Touaibia, M. (2017). New hydroxycinnamic acid esters as novel 5-lipoxygenase inhibitors that affect leukotriene biosynthesis. Mediators of Inflammation, 2017, 6904634. https://doi.org/10.1155/2017/6904634
  • Buccellati, C., Fumagalli, F., Viappiani, S., & Folco, G. (2002). Leukotriene modifiers: Novel therapeutic opportunities in asthma. Farmacology, 57(3), 235–242. https://doi.org/10.1016/S0014-827X(02)01209-0
  • Burggraaff, L., Oranje, P., Gouka, R., van der Pijl, P., Geldof, M., van Vlijmen, H. W. T., IJzerman, A. P., & van Westen, G. J. P. (2019). Identification of novel small molecule inhibitors for solute carrier SGLT1 using proteochemometric modeling. Journal of Cheminformatics, 11(1), 1–10. https://doi.org/10.1186/s13321-019-0337-8
  • Busse, W. W., & Lemanske, R. F. (2001). Asthma and the hygiene hypothesis. The New England Journal of Medicine, 344(5), 350–362. https://doi.org/10.1056/NEJM200102013440507
  • Calışkan, B., & Banoglu, E. (2013). Overview of recent drug discovery approaches for new generation leukotriene A4 hydrolase inhibitors. Expert Opinion on Drug Discovery, 8(1), 49–63. https://doi.org/10.1517/17460441.2013.735228
  • Cardoso-Teixeira, A. C., Ferreira-da-Silva, F. W., Peixoto-Neves, D., Oliveira-Abreu, K., Pereira-Gonçalves, Á., Coelho-de-Souza, A. N., & Leal-Cardoso, J. H. (2018). Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats. Molecules, 23(6), 1430. https://doi.org/10.3390/molecules23061430
  • Chavan, M. J., Wakte, P. S., & Shinde, D. B. (2010). Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 17(2), 149–151. https://doi.org/10.1016/j.phymed.2009.05.016
  • Connolly, M. L. (1986). Shape complementarity at the hemoglobin α1β1 subunit interface. Biopolymers, 25(7), 1229–1247. https://doi.org/10.1002/bip.360250705
  • Cortés-Ciriano, I., Ain, Q. U., Subramanian, V., Lenselink, E. B., Méndez-Lucio, O., IJzerman, A. P., Wohlfahrt, G., Prusis, P., Malliavin, T. E., van Westen, G. J. P., & Bender, A. (2015). Polypharmacology modelling using proteochemometrics (PCM): Recent methodological developments, applications to target families, and future prospects. MedChemComm, 6(1), 24–50. https://doi.org/10.1039/C4MD00216D
  • Dang, G. K., Parekar, R. R., Kamat, S. K., Scindia, A. M., & Rege, N. N. (2011). Antiinflammatory activity of Phyllanthus emblica, Plumbago zeylanica and Cyperus rotundus in acute models of inflammation. Phytotherapy Research, 25(6), 904–908. https://doi.org/10.1002/ptr.3345
  • Davies, D. R., Mamat, B., Magnusson, O. T., Christensen, J., Haraldsson, M. H., Mishra, R., Pease, B., Hansen, E., Singh, J., Zembower, D., Kim, H., Kiselyov, A. S., Burgin, A. B., Gurney, M. E., & Stewart, L. J. (2009). Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. Journal of Medicinal Chemistry, 52(15), 4694–4715. https://doi.org/10.1021/jm900259h
  • Davies, H. M. (2009). Organic chemistry: Synthetic lessons from nature. Nature, 459(7248), 786–787. https://doi.org/10.1038/459786a
  • de Lima, W. E. A., Pereira, A. F., de Castro, A. A., da Cunha, E. F. F., & Ramalho, T. C. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Discovery, 13, 360–371.
  • De Souza, T. D. S., da Silva Ferreira, M. F., Menini, L., de Lima Souza, J. R. C., de Oliveira Bernardes, C., & Ferreira, A. (2018). Chemotype diversity of Psidium guajava L. Phytochemistry, 153, 129–137. https://doi.org/10.1016/j.phytochem.2018.06.006
  • Dhillon, R. S., Singh, S., Kundra, S., & Basra, A. S. (1933). Studies on the chemical composition and biological activity of essential oil from Cyperus rotundus Linn. Plant Growth Regulation, 13, 89–93.
  • do Nascimento, K. F., Moreira, F. M. F., Alencar Santos, J., Kassuya, C. A. L., Croda, J. H. R., Cardoso, C. A. L., Vieira, M. D. C., Góis Ruiz, A. L. T., Ann Foglio, M., de Carvalho, J. E., & Formagio, A. S. N. (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. Journal of Ethnopharmacology, 210, 351–358. https://doi.org/10.1016/j.jep.2017.08.030
  • Elizabeth, S.-P. (2004). Treatment for inhibiting neoplastic lesions. Publication number US20080233219A1.
  • El-Naggar, M. H., Mira, A., Bar, F. M. A., Shimizu, K., Amer, M. M., & Badria, F. A. (2017). Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy. Bioorganic & Medicinal Chemistry, 25(3), 1277–1285. https://doi.org/10.1016/j.bmc.2016.12.048
  • Enache, L. A., Zhang, J., Sullins, D. W., Kennedy, I., Onua, E., Zembower, D. E., Muellner, F. W., Singh, J., & Kiselyov, A. S. (2009). Synthesis and structural assignment of two major metabolites of the LTA4H inhibitor DG-051. Bioorganic & Medicinal Chemistry Letters, 19(22), 6275–6279. https://doi.org/10.1016/j.bmcl.2009.09.097
  • Espinoza-Fonseca, L. M., & Garcia, M. J. (2008). Aromatic–aromatic interactions in the formation of the MDM2–p53 complex. Biochemical and Biophysical Research Communications, 370(4), 547–551. https://doi.org/10.1016/j.bbrc.2008.03.053
  • Fischer, D., Lin, S. L., Wolfson, H. L., & Nussinov, R. (1995). A geometry-based suite of molecular docking processes. Journal of Molecular Biology, 248(2), 459–477. https://doi.org/10.1016/S0022-2836(95)80063-8
  • Forli, S., & Olson, A. J. (2012). A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. Journal of Medicinal Chemistry, 55(2), 623–638. https://doi.org/10.1021/jm2005145
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gilbert, N. C., Bartlett, S. G., Waight, M. T., Neau, D. B., W. E. Boeglin, W. E., Brash, A. R., & Newcomer, M. E. (2011). The structure of human 5-lipoxygenase. Science (New York, N.Y.), 331(6014), 217–219. https://doi.org/10.1126/science.1197203
  • Gomes, B. S., Neto, B. P. S., Lopes, E. M., Cunha, F. V. M., Araújo, A. R., Wanderley, C. W. S., Wong, D. V. T., Júnior, R. C. P. L., Ribeiro, R. A., Sousa, D. P., Medeiros, J. V. R., Oliveira, R. C. M., & Oliveira, F. A. (2017). Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chemico-Biological Interactions, 273, 73–81. https://doi.org/10.1016/j.cbi.2017.05.019
  • Green, D. V., Leach, A. R., & Head, M. S. (2012). Computer-aided molecular design under the SWOTlight. Journal of Computer-Aided Molecular Design, 26(1), 51–56. https://doi.org/10.1007/s10822-011-9514-1
  • Gribble, G. (2012). W. Progress in the chemistry of organic natural products (Vol.68). Springer Science & Business Media.
  • Haeggström, J. Z. (2001). Structure, function and regulation of leukotriene A4 hydrolase. American Journal of Respiratory and Critical Care Medicine, 161, 25–31. https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-6
  • Hartshorn, M. J., Verdonk, M. L., Chessari, G., Brewerton, S. C., Mooij, W. T. M., Mortenson, P. N., & Murray, C. W. (2007). Diverse, high-quality test set for the validation of protein–ligand docking performance. Journal of Medicinal Chemistry, 50(4), 726–741. https://doi.org/10.1021/jm061277y
  • Heyden, A., Lin, H., & Truhlar, D. G. (2007). Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. The Journal of Physical Chemistry. B, 111(9), 2231–2241. https://doi.org/10.1021/jp0673617
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson–Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Humphrey, W., Dalk, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ichinose, Y., Genka, K., Koike, T., Kato, H., Watanabe, Y., Mori, T., Iioka, S., Sakuma, A., & Ohta, M. (2003). Randomized double-blind placebo-controlled trial of Bestatin in patients with resected stage I squamous-cell lung carcinoma. Journal of the National Cancer Institute, 95(8), 605–610. https://doi.org/10.1093/jnci/95.8.605
  • Ilham, E. P., Betul, D., & Sevim, K. (2018). Volatiles of Turkish Cyperus rotundus L. Roots, Records of Natural Products, 12, 222–228.
  • Jeong, C.-H., Bode, A. M., Pugliese, A., Cho, Y.-Y., Kim, H.-G., Shim, J.-H., Jeon, Y.-J., Li, H., Jiang, H., & Dong, Z. (2009). [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Research, 69(13), 5584–5591. https://doi.org/10.1158/0008-5472.CAN-09-0491
  • Jiangsu New Medical College. (1977). Dictionary of Chinese Herbal Medicine (pp. 1672–1674). Shanghai Science & Technology Press.
  • Jin, J. H., Lee, D. U., Kim, Y. S., & Kim, H. P. (2011). Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Archives of Pharmacal Research, 34(2), 223–228. https://doi.org/10.1007/s12272-011-0207-z
  • Jorgensen, W. L., Maxwell, D. S., & Tirado, R. J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Joshi, A. R., & Joshi, K. (2000). Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. Journal of Ethnopharmacology, 73(1–2), 175–183. https://doi.org/10.1016/S0378-8741(00)00301-9
  • Kachur, J. F., Askonas, L. J., Villani-Price, D., Ghoreishi-Haack, N., Won-Kim, S., Liang, C.-D D., Russell, M. A., & Smith, W. G. (2002). Pharmacological characterization of SC-57461A (3-[methyl[3-[4-(phenylmethyl)phenoxy]propyl]amino]propanoic acid HCl), a potent and selective inhibitor of leukotriene A(4) hydrolase II: In vivo studies. The Journal of Pharmacology and Experimental Therapeutics, 300(2), 583–587. https://doi.org/10.1124/jpet.300.2.583
  • Karami, Y., Bitard-Feildel, T., Laine, E., & Carbone, A. (2018). “Infostery” analysis of short molecular dynamics simulations identifies highly sensitive residues and predicts deleterious mutations. Scientific Reports, 8, 1–18. https://doi.org/10.1038/s41598-018-34508-2
  • Kaushik, P., Lal Khokra, S., Rana, A. C., & Kaushik, D. (2014). Pharmacophore modeling and molecular docking studies on Pinus roxburghii as a target for diabetes mellitus. Advances in Bioinformatics, 2014, 903246. https://doi.org/10.1155/2014/903246
  • Khamis, M. A., Gomaa, W., & Ahmed, W. F. (2015). Machine learning in computational docking. Artificial Intelligence in Medicine, 63(3), 135–152. https://doi.org/10.1016/j.artmed.2015.02.002
  • Kilani, S., Bouhlel, I., Ben Ammar, R., Ben Shair, M., Skandrani, I., Boubaker, J., Mahmoud, A., Dijoux-Franca, M.-G., Ghedira, K., & Chekir-Ghedira, L. (2007). Chemical investigation of different extracts and essential oil from the tubers of (Tunisian) Cyperus rotundus. Correlation with their antiradical and antimutagenic properties. Annals of Microbiology, 57(4), 657–664. https://doi.org/10.1007/BF03175369
  • Kolář, M., & Hobza, P. (2012). On extension of the current biomolecular empirical force field for the description of halogen bonds. Journal of Chemical Theory and Computation, 8(4), 1325–1333. https://doi.org/10.1021/ct2008389
  • Kolář, M., Hobza, P., & Bronowska, A. K. (2013). Plugging the explicit σ-holes in molecular docking. Chemical Communications (Cambridge, England), 49(10), 981–983. https://doi.org/10.1039/c2cc37584b
  • Kopečná, M., Macháček, M., Nováčková, A., Paraskevopoulos, G., Roh, J., & Vávrová, K. (2019). Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Scientific Reports, 9, 1–12. https://doi.org/10.1038/s41598-019-51226-5
  • Korb, O., Stutzle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced protein-ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1), 84–96. https://doi.org/10.1021/ci800298z
  • Kuca, K., Musilek, K., Jun, D., Zdarova-Karasova, J., Nepovimova, E., Soukup, O., Hrabinova, M., Mikler, J., Franca, T. C. C., Da Cunha, E. F. F., De Castro, A. A., Valis, M., & Ramalho, T. C. (2018). A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacology & Toxicology, 19(1), 8–10. https://doi.org/10.1186/s40360-018-0196-3
  • Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule–ligand interactions. Journal of Molecular Biology, 161(2), 269–288. https://doi.org/10.1016/0022-2836(82)90153-X
  • Laffferty, F. M. (1998). Wiley registry of mass spectral data, Wiley (7th ed.). New York, 2000 with NIST ASD Team, NIST Mass Spectral Library, National institute of standards and Technology.
  • Lanzarotti, E., Biekofsky, R. R., Estrin, D. A., Marti, M. A., & Turjanski, A. G. (2011). Aromatic–aromatic interactions in proteins: Beyond the dimer. Journal of Chemical Information and Modeling, 51(7), 1623–1633. https://doi.org/10.1021/ci200062e
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lovell, S. C., Davis, I. W., Arendall, W. B., De Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Low, C. M., Akthar, S., Patel, D. F., Löser, S., Wong, C.-T., Jackson, P. L., Blalock, J. E., Hare, S. A., Lloyd, C. M., & Snelgrove, R. J. (2017). The development of novel LTA4H modulators to selectively target LTB4 generation. Scientific Reports, 7, 44449. https://doi.org/10.1038/srep44449
  • Madura, K. (2009). Cell biology: The proteasome assembly line. Nature, 459(7248), 787–788. https://doi.org/10.1038/459787a
  • Medina, J. F., Wetterholm, A., Rådmark, O., Shapiro, R., Haeggström, J. Z., Vallee, B. L., & Samuelsson, B. (1991). Leukotriene A4 hydrolase: Determination of the three zinc-binding ligands by site-directed mutagenesis and zinc analysis. Proceedings of the National Academy of Sciences of the United States of America, 88(17), 7620–7624. https://doi.org/10.1073/pnas.88.17.7620
  • Mikulskis, P., Genheden, S., Wichmann, K., & Ryde, U. (2012). A semiempirical approach to ligand-binding affinities: Dependence on the Hamiltonian and corrections. Journal of Computational Chemistry, 33(12), 1179–1189. https://doi.org/10.1002/jcc.22949
  • Mohd Amin, S. N., Md Idris, M. H., Selvaraj, M., Mohd Amin, S. N., Jamari, H., Kek, T. L., & Salleh, M. Z. (2020). Virtual screening, ADME study, and molecular dynamic simulation of chalcone and flavone derivatives as 5-Lipoxygenase (5-LO) inhibitor. Molecular Simulation, 46(6), 487–496. https://doi.org/10.1080/08927022.2020.1732961
  • Molin, W. T., Ray, J. D., Scheffler, B. E., Kronfol, R. R., & Bryson, C. T. (2009). Genetic variation in purple nutsedge (Cyperus rotundus). WSSA Annual Meeting, Orlando, FL Abstract number 46.
  • Muddana, H. S., & Gilson, M. K. (2012). Calculation of host–guest binding affinities using a quantum-mechanical energy model. Journal of Chemical Theory and Computation, 8(6), 2023–2033. https://doi.org/10.1021/ct3002738
  • Mueller, M. J., Blomster, M., Oppermann, U. C., Jörnvall, H., Samuelsson, B., & Haeggström, J. Z. (1996). Leukotriene A4 hydrolase: Protection from mechanism-based inactivation by mutation of tyrosine-378. Proceedings of the National Academy of Sciences of the United States of America, 93(12), 5931–5935. https://doi.org/10.1073/pnas.93.12.5931
  • Nature Technology Inc. (2008). Composition for diet comprising plant essential oil as active ingredient, sheet type composition for diet comprising thereof, percutaneous pharmaceutical agent for diet comprising thereof, and method for producing thereof.
  • Niu, S., Xie, C. L., Zhong, T., Xu, W., Luo, Z. H., Shao, Z., & Yang, X. W. (2017). Sesquiterpenes from a deep-sea-derived fungus Graphostroma sp. MCCC 3A00421. Tetrahedron, 73(52), 7267–7273. https://doi.org/10.1016/j.tet.2017.11.013
  • Norel, R., Lin, S. L., Wolfson, H. J., & Nussinov, R. (1994). Shape complementarity at protein–protein interfaces. Biopolymers: Original Research on Biomolecules, 34(7), 933–940. https://doi.org/10.1002/bip.360340711
  • Okoli, C., Shilling, D. G., Smith, R. L., & Bewick, T. A. (1997). Genetic diversity in purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.). Biological Control, 8(2), 111–118. https://doi.org/10.1006/bcon.1996.0490
  • Oladipupo, L., & Adebola, O. (2009). Chemical composition of the essential oils of the flowers, leaves and stems of two Senecio polyanthemoides Sch. Bip. Samples from South Africa. Molecules (Basel, Switzerland), 14(6), 2077–2086. https://doi.org/10.3390/molecules14062077
  • Oliveira, M. G. B., Marques, R. B., Santana, M. F., Santos, A. B. D., Brito, F. A., Barreto, E. O., Sousa, D. P., Almeida, F. R. C., Badauê-Passos, D., Antoniolli, Â. R., & Quintans-Júnior, L. J. (2012). α‐Terpineol reduces mechanical hypernociception and inflammatory response. Basic & Clinical Pharmacology & Toxicology, 111, n/a–125. https://doi.org/10.1111/j.1742-7843.2012.00875.x
  • Paul, O. (1983). Cypéracées, Flore du Sahara (2nd ed., pp. 138–139). C.N.R.S.
  • Pirzada, A. M., Ali, H. H., Naeem, M., Latif, M., Bukhari, A. H., & Tanveer, A. (2015). Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. Journal of Ethnopharmacology, 174, 540–560. https://doi.org/10.1016/j.jep.2015.08.012
  • Poeckel, D., & Funk, C. D. (2010). The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovascular Research, 86(2), 243–253. https://doi.org/10.1093/cvr/cvq016
  • Puratchikody, A., Devi, C., & Nagalakshmi, G. (2006). Wound healing activity of Cyperus rotundus Linn. Indian Journal of Pharmaceutical Sciences, 68(1), 97–101. https://doi.org/10.4103/0250-474X.22976
  • Rådmark, O., Werz, O. D., Steinhilber, D., & Samuelsson, B. (2015). 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochimica et Biophysica Acta, 1851(4), 331–339. https://doi.org/10.1016/j.bbalip.2014.08.012
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. https://doi.org/10.1016/S0022-2836(63)80023-6
  • Rao, N. L., Dunford, P. J., Xue, X., Jiang, X., Lundeen, K. A., Coles, F., Riley, J. P., Williams, K. N., Grice, C. A., Edwards, J. P., Karlsson, L., & Fourie, A. M. (2007). Anti-inflammatory activity of a potent, selective leukotriene A4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. The Journal of Pharmacology and Experimental Therapeutics, 321(3), 1154–1160. https://doi.org/10.1124/jpet.106.115436
  • Raut, N. A., & Gaikwad, N. J. (2006). Antidiabetic activity of hydro-ethanolic extract of Cyperus rotundus in alloxan induced diabetes in rats. Fitoterapia, 77(7–8), 585–588. https://doi.org/10.1016/j.fitote.2006.09.006
  • Rodrigues, T., Werner, M., Roth, J., da Cruz, E. H. G., Marques, M. C., Akkapeddi, P., Lobo, S. A., Koeberle, A., Corzana, F., da Silva Júnior, E. N., Werz, O., & Bernardes, G. J. L. (2018). Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chemical Science, 9(34), 6899–6903. https://doi.org/10.1039/c8sc02634c
  • Rudberg, P. C., Tholander, F., Thunnissen, M. M., & Haeggström, J. Z. (2002). Leukotriene A4 hydrolase/aminopeptidase glutamate 271 is a catalytic residue with specific roles in two distinct enzyme mechanisms. The Journal of Biological Chemistry, 277(2), 1398–1404. https://doi.org/10.1074/jbc.M106577200
  • Rudberg, P. C., Tholander, F., Thunnissen, M. M., Samuelsson, B., & Haeggström, J. Z. (2002). Leukotriene A4 hydrolase: Selective abrogation of leukotriene B4 formation by mutation of aspartic acid 375. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4215–4220. https://doi.org/10.1073/pnas.072090099
  • Salud, P. G., Miguel, Z., S., Lucina, A. G., & Miguel, R. L. (2011). Anti-inflammatory activity of some essential oils. Journal of Essential Oil Research, 10, 38–44.
  • Sandanayaka, V., Mamat, B., Mishra, R. K., Winger, J., Krohn, M., Zhou, L.-M., Keyvan, M., Enache, L., Sullins, D., Onua, E., Zhang, J., Halldorsdottir, G., Sigthorsdottir, H., Thorlaksdottir, A., Sigthorsson, G., Thorsteinnsdottir, M., Davies, D. R., Stewart, L. J., Zembower, D. E., … Gurney, M. E. (2010). Discovery of 4-[(2S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis. Journal of Medicinal Chemistry, 53(2), 573–585. https://doi.org/10.1021/jm900838g
  • Sapra, B., Jain, S., & Tiwary, A. (2008). Percutaneous permeation enhancement by terpenes: Mechanistic view. The AAPS Journal, 10(1), 120–132. https://doi.org/10.1208/s12248-008-9012-0
  • Sarma, R., Adhikari, K., Mahanta, S., & Khanikor, B. (2019). Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Scientific Reports, 9, 1–12. https://doi.org/10.1038/s41598-019-45908-3
  • Schaible, A. M., Filosa, R., Temml, V., Krauth, V., Matteis, M., Peduto, A., Bruno, F., Luderer, S., Roviezzo, F., Di Mola, A., de Rosa, M., D'Agostino, B., Weinigel, C., Barz, D., Koeberle, A., Pergola, C., Schuster, D., & Werz, O. (2014). Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase. British Journal of Pharmacology, 171(9), 2399–2412. https://doi.org/10.1111/bph.12592
  • Senn, H. M., & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie (International ed. in English), 48(7), 1198–1229. https://doi.org/10.1002/anie.200802019
  • Shoichet, B. K., Kuntz, I. D., & Bodian, D. L. (1992). Molecular docking using shape descriptors. Journal of Computational Chemistry, 13(3), 380–397. https://doi.org/10.1002/jcc.540130311
  • Showalter, S. A., & Bruschweiler, R. (2007). Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field. Journal of Chemical Theory and Computation, 3(3), 961–975. https://doi.org/10.1021/ct7000045
  • Silva, R. O., Salvadori, M. S., Sousa, F. B. M., Santos, M. S., Carvalho, N. S., Sousa, D. P., Gomes, B. S., Oliveira, F. A., Barbosa, A. L. R., Freitas, R. M., de Almeida, R. N., & Medeiros, J.-V R. (2014). Evaluation of the anti‐inflammatory and antinociceptive effects of Myrtenol, a plant‐derived monoterpene alcohol, in mice. Flavour and Fragrance Journal, 29(3), 184–192. https://doi.org/10.1002/ffj.3195
  • Singh, S., Awasthi, M., Pandey, V. P., & Dwivedi, U. N. (2017). Lipoxygenase directed anti-inflammatory and anti-cancerous secondary metabolites: ADMET-based screening, molecular docking and dynamics simulation. Journal of Biomolecular Structure & Dynamics, 35(3), 657–668. https://doi.org/10.1080/07391102.2016.1159985
  • Snelgrove, R. J., Jackson, P. L., Hardison, M. T., Noerager, B. D., Kinloch, A., Gaggar, A., Shastry, S., Rowe, S. M., Shim, Y. M., Hussell, T., & Blalock, J. E. (2010). A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science (New York, N.Y.), 330(6000), 90–94. https://doi.org/10.1126/science.1190594
  • Sobolev, V., Wade, R. C., Vriend, G., & Edelman, M. (1996). Molecular docking using surface complementarity. Proteins: Structure, Function, and Bioinformatics, 25(1), 120–129. https://doi.org/10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.0.CO;2-M
  • Solanke, C. O., Trapl, D., Šućur, Z., Mareška, V., Tvaroška, I., & Spiwok, V. (2019). Atomistic simulation of carbohydrate-protein complex formation: Hevein-32 domain. Scientific Reports, 9, 1–7. https://doi.org/10.1038/s41598-019-53815-w
  • Sonwa, M. M., & König, W. A. (2001). Chemical study of the essential oil of Cyperus rotundus. Phytochemistry, 58(5), 799–810. https://doi.org/10.1016/S0031-9422(01)00301-6
  • Stsiapanava, A., Olsson, U., Wan, M., Kleinschmidt, T., Rutishauser, D., Zubarev, R. A., Samuelsson, B., Rinaldo, M. A., & Haeggström, J. Z. (2014). Binding of Pro–Gly–Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 111(11), 4227–4232. https://doi.org/10.1073/pnas.1402136111
  • Symrise, G., & Co, K. (2011). Precursor compounds of sweet taste receptor antagonists for the prevention or treatment of disease. US Patent 20110045069. 02 24 2011.
  • Tayyar, R. I., Nguyen, J. H. T., & Holt, J. S. (2003). Genetic and morphological analysis of two novel nutsedge biotypes from California. Weed Science, 51(5), 731–739. https://doi.org/10.1614/P2002-131
  • Thangapandian, S., John, S., Arooj, M., & Lee, K. W. (2012). Molecular dynamics simulation study and hybrid pharmacophore model development in human LTA4H inhibitor design. PLoS One, 7(4), e34593. https://doi.org/10.1371/journal.pone.0034593
  • Torres, M. J., Fierro, A., Pessoa-Mahana, C. D., Romero-Parra, J., Cabrera, G., & Faúndez, M. (2017). Effect of alpha lipoic acid on leukotriene A4 hydrolase. European Journal of Pharmacology, 799, 41–47. https://doi.org/10.1016/j.ejphar.2017.01.038
  • Tresadern, G., Trabanco, A. A., Pérez-Benito, L., Overington, J. P., van Vlijmen, H. W. T., & van Westen, G. J. P. (2017). Identification of allosteric modulators of metabotropic glutamate 7 receptor using proteochemometric modeling. Journal of Chemical Information and Modeling, 57(12), 2976–2985. https://doi.org/10.1021/acs.jcim.7b00338
  • Tsai, C. J., Xu, D., & Nussinov, R. (1998). Protein folding via binding and vice versa. Folding & Design, 3(4), R71–R80. https://doi.org/10.1016/S1359-0278(98)00032-7
  • Tsuji, F., Aono, H., Tsuboi, T., Murakami, T., Enomoto, H., Mizutani, K., & Inagaki, N. (2010). Role of leukotriene B4 in 5-lipoxygenase metabolite- and allergy-induced itch-associated responses in mice . Biological & Pharmaceutical Bulletin, 33(6), 1050–1053. https://doi.org/10.1248/bpb.33.1050
  • Uddin, S. J., Mondal, K., Shilpi, J. A., & Rahman, M. T. (2006). Antidiarrhoeal activity of Cyperus rotundus. Fitoterapia, 77(2), 134–136. https://doi.org/10.1016/j.fitote.2004.11.011
  • Ul-Haq, Z., Khan, N., Zafar, S. K., & Moin, S. T. (2016). Active site characterization and structure based 3D-QSAR studies on non-redox type 5-lipoxygenase inhibitors. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 88, 26–36. https://doi.org/10.1016/j.ejps.2016.03.014
  • Verma, S. S., Rai, V., Awasthee, N., Dhasmana, A., Rajalaksmi, D. S., Nair, M. S., & Gupta, S. C. (2019). Isodeoxyelephantopin, a sesquiterpene lactone induces ROS generation, suppresses NF-κB activation, modulates LncRNA expression and exhibit activities against breast cancer. Scientific Reports, 9, 1–16. https://doi.org/10.1038/s41598-019-52971-3
  • Wetterholm, A., Medina, J. F., Rådmark, O., Shapiro, R., Haeggström, J. Z., Vallee, B. L., & Samuelsson, B. (1992). Leukotriene A4 hydrolase: Abrogation of the peptidase activity by mutation of glutamic acid-296. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 9141–9145. https://doi.org/10.1073/pnas.89.19.9141
  • Wills, G. D. (1998). Comparison of purple nutsedge (Cyperus rotundus) from around the world. Weed Technology, 12(3), 491–503. https://doi.org/10.1017/S0890037X00044201
  • Wójcikowski, M., Ballester, P. J., & Siedlecki, P. (2017). Performance of machine-learning scoring functions in structure-based virtual screening. Scientific Reports, 7, 46710–46710. https://doi.org/10.1038/srep46710
  • Yadav, D. K., Mudgal, V., Agrawal, J., Maurya, A. K., Bawankule, D. U., Chanotiya, C. S., Khan, F., & Thul, S. T. (2013). Molecular docking and ADME studies of natural compounds of Agarwood oil for topical anti-inflammatory activity. Current Computer-Aided Drug Design, 9(3), 360–370. https://doi.org/10.2174/1573409911309030012
  • Zatelli, G. A., Temml, V., Kutil, Z., Landa, P., Vanek, T., Schuster, D., & Falkenberg, M. (2016). Miconidin acetate and primin as potent 5-lipoxygenase inhibitors from Brazilian Eugenia hiemalis (Myrtaceae). Planta Medica Letters, 3, 17–19.
  • Zhu, M., Luk, H. H., Fung, H. S., & Luk, C. T. (1997). Cytoprotective effects of Cyperus rotundus against ethanol induced gastric ulceration in rats. Phytotherapy Research, 11(5), 392–394. https://doi.org/10.1002/(SICI)1099-1573(199708)11:5<392::AID-PTR113>3.0.CO;2-1
  • Zielenkiewicz, P., & Rabczenko, A. (1984). Protein–protein recognition: Method of finding complementary surfaces of interacting proteins. Journal of Theoretical Biology, 111(1), 17–30. https://doi.org/10.1016/S0022-5193(84)80193-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.