346
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning modeling to identify affinity improved biobetter anticancer drug trastuzumab and the insight of molecular recognition of trastuzumab towards its antigen HER2

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 11638-11652 | Received 31 Mar 2021, Accepted 24 Jul 2021, Published online: 14 Aug 2021

References

  • Balakrishnan, N., Gurunathan, B., & Surapaneni, K. M. (2020). Application of proteometric approach for identification of functional mutant sites to improve the binding affinity of anticancer biologic trastuzumab with its antigen human epidermal growth factor receptor 2. Journal of Molecular Recognition: JMR, 33(2), e2818–14. https://doi.org/10.1002/jmr.2818
  • Bazargani, Y. T., Boer, A., De, Schellens, J. H. M., Leufkens, H. G. M., & Mantel-Teeuwisse, A. K. (2015). Essential medicines for breast cancer in low and middle income countries. BMC Cancer, 15, 1–8. https://doi.org/10.1186/s12885-015-1583-4
  • Bersell, K., Arab, S., Haring, B., & Kühn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138(2), 257–270. https://doi.org/10.1016/j.cell.2009.04.060
  • Bonetta, R., & Valentino, G. (2020). Machine learning techniques for protein function prediction. Proteins, 88(3), 397–413. https://doi.org/10.1002/prot.25832
  • Caballero, J., Fernández, L., Garriga, M., Abreu, J. I., Collina, S., & Fernández, M. (2007). Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. Journal of Molecular Graphics & Modelling, 26(1), 166–178. https://doi.org/10.1016/j.jmgm.2006.11.002
  • Cadet, F., Fontaine, N., Li, G., Sanchis, J., Ng Fuk Chong, M., Pandjaitan, R., Vetrivel, I., Offmann, B., & Reetz, M. T. (2018). A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes. Scientific Reports, 8(1), 16757. https://doi.org/10.1038/s41598-018-35033-y
  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199
  • Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113–126. https://doi.org/10.1016/S0893-6080(03)00169-2
  • Chothiav, C., & Tt, A. M. L. (1987). Canonical structures for the hypervariable regions of immunoglobulins. Journal of Molecular Biology, 196(4), 901–917. http://doi.org/10.1016/0022-2836(87)90412-8
  • Fiszman, G. L., & Jasnis, A. (2011). Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. International Journal of Breast Cancer, 2011, 352182. https://doi.org/10.4061/2011/352182
  • Frishman, D., & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins, 23(4), 566–579. https://doi.org/10.1002/prot.340230412
  • Gerstner, R. B., Carter, P., & Lowman, H. B. (2002). Sequence plasticity in the antigen-binding site of a therapeutic anti-Her2 antibody. Journal of Molecular Biology, 321(5), 851–862. https://doi.org/10.1016/S0022-2836(02)00677-0
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of Molecular Graphics and Modelling,20, 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Harding, F. A., Akamatsu Yoshiko, Dubridge, R. B., & Powers, D. B. (2015). Anti-HER2 antibodies and their uses. U.S. Patent No.8,937,159 B2. Washington, DC: U.S. Patent and Trademark Office.
  • Kabat, E. A., Wu, T. T., Perry, H. M., & Gottesman, K., F. C. (1991). Sequences of proteins of immunological interest (5th ed.). National Institutes of Health.
  • Kelley, R. F., & O'Connell, M. P. (1993). Thermodynamic analysis of an antibody functional epitope. Biochemistry, 32(27), 6828–6835. https://doi.org/10.1021/bi00078a005
  • Li, B., Zhao, L., Wang, C., Guo, H., Wu, L., Zhang, X., Qian, W., Wang, H., & Guo, Y. (2010). The protein-protein interface evolution acts in a similar way to antibody affinity maturation. Journal of Biological Chemistry, 285(6), 3865–3871. https://doi.org/10.1074/jbc.M109.076547
  • Li, G., Guo, J., Shen, B.-Q., Yadav, D. B., Sliwkowski, M. X., Crocker, L. M., Lacap, J. A., & Phillips, G. D. L. (2018). Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Molecular Cancer Therapeutics, 17(7), 1441–1453. https://doi.org/10.1158/1535-7163.MCT-17-0296
  • Lippow, S. M., Wittrup, K. D., & Tidor, B. (2007). Computational design of antibody-affinity improvement beyond in vivo maturation. Nature Biotechnology, 25(10), 1171–1176. https://doi.org/10.1038/nbt1336
  • Lowe, D. C., Gerhardt, S., Ward, A., Hargreaves, D., Anderson, M., Ferraro, F., Pauptit, R. A., Pattison, D. V., Buchanan, C., Popovic, B., Finch, D. K., Wilkinson, T., Sleeman, M., Vaughan, T. J., & Mallinder, P. R. (2011). Engineering a high-affinity anti-IL-15 antibody: Crystal structure reveals an α-helix in VH CDR3 as Key component of paratope. Journal of Molecular Biology, 406(1), 160–175. https://doi.org/10.1016/j.jmb.2010.12.017
  • Luque-Cabal, M., García-Teijido, P., Fernández-Pérez, Y., Sánchez-Lorenzo, L., & Palacio-Vázquez, I. (2016). Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clinical Medicine Insights. Oncology, 10(Suppl 1), 21–30. https://doi.org/10.4137/CMO.S34537
  • Ménard, S., Pupa, S. M., Campiglio, M., & Tagliabue, E. (2003). Biologic and therapeutic role of HER2 in cancer. Oncogene, 22(42), 6570–6578. https://doi.org/10.1038/sj.onc.1206779
  • Mitra, I., Saha, A., & Roy, K. (2010). Exploring quantitative structure-activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Molecular Simulation, 36(13), 1067–1079. https://doi.org/10.1080/08927022.2010.503326
  • Mohan, N., Jiang, J., Dokmanovic, M., & Wu, W. J. (2018). Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antibody Therapeutics, 1(1), 13–17. https://doi.org/10.1093/abt/tby003
  • Moon, S. K., Park, S. R., Park, A., Oh, H. M., Shin, H. J., Jeon, E. J., Kim, S., Park, H. J., Yeon, Y. J., & Yoo, Y. J. (2016). Substitution of heavy complementarity determining region 3 (CDR-H3) residues can synergistically enhance functional activity of antibody and its binding affinity to HER2 antigen. Molecules and Cells, 39(3), 217–228. https://doi.org/10.14348/molcells.2016.2235
  • Nixon, N. A., Hannouf, M. B., & Verma, S. (2018). The evolution of biosimilars in oncology, with a focus on trastuzumab. Current Oncology, 25, 171–179. http://doi.org/10.3747/co.25.3942
  • Riccio, G., Coppola, C., Piscopo, G., Capasso, I., Maurea, C., Esposito, E., De Lorenzo, C., & Maurea, N. (2016). Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies? Human Vaccines & Immunotherapeutics, 12(5), 1124–1131. https://doi.org/10.1080/21645515.2015.1125056
  • Roy, P. P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules (Basel, Switzerland), 14(5), 1660–1701. https://doi.org/10.3390/molecules14051660
  • Shayanfar, A., & Shayanfar, S. (2014). Is regression through origin useful in external validation of QSAR models? European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 59(1), 31–35. https://doi.org/10.1016/j.ejps.2014.03.007
  • Tan, A. R., & Swain, S. M. (2003). Ongoing adjuvant trials with trastuzumab in breast cancer. Seminars in Oncology, 30(5 Suppl 16), 54–64. https://doi.org/10.1053/j.seminoncol.2003.08.008
  • Team RC. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • The PyMOL Molecular Graphics System, Version 2.0. (n.d.). Schrödinger, LLC.
  • Trevino, V., & Falciani, F. (2006). GALGO: An R package for multivariate variable selection using genetic algorithms. Bioinformatics, 22(9), 1154–1156. https://doi.org/10.1093/bioinformatics/btl074
  • Urquhart, L. (2018). Market watch: Top drugs and companies by sales in 2017. Nature Reviews Drug Discovery, 17(4), 232. https://doi.org/10.1038/nrd.2018.42
  • Wells, J. A. (1990). Additivity of mutational effects in proteins. Biochemistry, 29(37), 8509–8517. https://doi.org/10.1021/bi00489a001
  • Wu, Z., Jennifer Kan, S. B., Lewis, R. D., Wittmann, B. J., & Arnold, F. H. (2019). Machine learning-assisted directed protein evolution with combinatorial libraries. Proceedings of the National Academy of Sciences of the United States of America, 116(18), 8852–8858. https://doi.org/10.1073/pnas.1901979116
  • Xiao, N., Cao, D.-S., Zhu, M.-F., & Xu, Q.-S. (2015). protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics (Oxford, England), 31(11), 1857–1859. https://doi.org/10.1093/bioinformatics/btv042 25619996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.