325
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulation, synthesis and topoisomerase inhibitory actions of vanillin derivatives: a systematic computational structural integument

, , , , &
Pages 11653-11663 | Received 06 Apr 2021, Accepted 24 Jul 2021, Published online: 06 Aug 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Akagi, K., Hirose, M., Hoshiya, T., Mizoguchi, Y., Ito, N., & Shirai, T. (1995). Modulating effects of ellagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model. Cancer Letters, 94(1), 113–121. https://doi.org/10.1016/0304-3835(95)03833-I
  • Ashraf, Z., Rafiq, M., Seo, S. Y., Babar, M. M., & Zaidi, N. U. S. S. (2015). Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorganic & Medicinal Chemistry, 23(17), 5870–5880. https://doi.org/10.1016/j.bmc.2015.06.068
  • Bamforth, K. J., Jones, A. L., Roberts, R. C., & Coughtrie, M. W. H. (1993). Common food additives are potent inhibitors of human liver 17α-ethinyloestradiol and dopamine sulphotransferases. Biochemical Pharmacology, 46(10), 1713–1720. https://doi.org/10.1016/0006-2952(93)90575-H
  • Baral, N., Mohapatra, S., Raiguru, B. P., Mishra, N. P., Panda, P., Nayak, S., Pandey, S. K., Kumar, P. S., & Sahoo, C. R. (2019). Microwave-assisted rapid and efficient synthesis of new series of Chromene-Based 1,2,4-Oxadiazole derivatives and evaluation of antibacterial activity with molecular docking investigation. Journal of Heterocyclic Chemistry, 56(2), 552–565. https://doi.org/10.1002/jhet.3430
  • Bezerra, C. F., Camilo, C. J., do Nascimento Silva, M. K., de Freitas, T. S., Ribeiro-Filho, J., & Coutinho, H. D. M. (2017). Vanillin selectively modulates the action of antibiotics against resistant bacteria. Microbial Pathogenesis, 113, 265–268. https://doi.org/10.1016/j.micpath.2017.10.052
  • Cheng, W. Y., Wu, S. L., Hsiang, C. Y., Li, C. C., Lai, T. Y., Lo, H. Y., Shen, W. S., Lee, C. H., Chen, J. C., Wu, H. C., & Ho, T. Y. (2008). Relationship between San-Huang-Xie-Xin-Tang and its herbal components on the gene expression profiles in HepG2 cells. The American Journal of Chinese Medicine, 36(4), 783–797. https://doi.org/10.1142/S0192415X08006235
  • Chohan, Z. H., Shad, H. A., & Supuran, C. T. (2012). Synthesis, characterization and biological studies of sulfonamide Schiff's bases and some of their metal derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(1), 58–68. https://doi.org/10.3109/14756366.2011.574623
  • Dehury, B., Behera, S. K., & Mahapatra, N. (2017). Structural dynamics of Casein Kinase I (CKI) from malarial parasite Plasmodium falciparum (Isolate 3D7): Insights from theoretical modelling and molecular simulations. Journal of Molecular Graphics & Modelling, 71, 154–166. https://doi.org/10.1016/j.jmgm.2016.11.012
  • Dehury, B., Patra, M. C., Maharana, J., Sahu, J., Sen, P., Modi, M. K., Choudhury, M. D., & Barooah, M. (2014). Structure-based computational study of two disease resistance gene homologues (Hm1 and Hm2) in maize (Zea mays L.) with implications in plant-pathogen interactions. PLoS One, 9(5), e97852 https://doi.org/10.1371/journal.pone.0097852
  • Dehury, B., Sahu, M., Patra, M. C., Sarma, K., Sahu, J., Sen, P., Modi, M. K., Choudhury, M. D., & Barooah, M. (2013). Insights into the structure-function relationship of disease resistance protein HCTR in maize (Zea mays L.): A computational structural biology approach. The Journal of Molecular Graphics and Modelling, 45, 50–64. https://doi.org/10.1016/j.jmgm.2013.08.011
  • Depowski, P. L., Rosenthal, S. I., Brien, T. P., Stylos, S., Johnson, R. L., & Ross, J. S. (2000). Topoisomerase IIα expression in breast cancer: Correlation with outcome variables. Modern Pathology, 13(5), 542–547. https://doi.org/10.1038/modpathol.3880094
  • Elsherbiny, N. M., Younis, N. N., Shaheen, M. A., & Elseweidy, M. M. (2016). The synergistic effect between vanillin and doxorubicin in Ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line. Pathology, Research and Practice, 212(9), 767–777. https://doi.org/10.1016/j.prp.2016.06.004
  • Girdhar, K., Dehury, B., Kumar Singh, M., Daniel, V. P., Choubey, A., Dogra, S., Kumar, S., & Mondal, P. (2019). Novel insights into the dynamics behavior of glucagon-like peptide-1 receptor with its small molecule agonists. Journal of Biomolecular Structure & Dynamics, 37(15), 3976–3986. https://doi.org/10.1080/07391102.2018.1532818
  • Hekkelman, M. L., Te Beek, T. A. H., Pettifer, S. R., Thorne, D., Attwood, T. K., & Vriend, G. (2010). WIWS: A protein structure bioinformatics web service collection. Nucleic Acids Research, 38(suppl Web Server issue), W719–723. https://doi.org/10.1093/nar/gkq453
  • Ho, K. L., Yazan, L. S., Ismail, N., & Ismail, M. (2011). Toxicology study of vanillin on rats via oral and intra-peritoneal administration. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 49(1), 25–30. https://doi.org/10.1016/j.fct.2010.08.023
  • Hocking, M. B. (1997). Vanillin: Synthetic flavoring from spent sulfite liquor. Journal of Chemical Education, 74(9), 1055. https://doi.org/10.1021/ed074p1055
  • Hussain, M., Qadri, T., Hussain, Z., Saeed, A., Channar, P. A., Shehzadi, S. A., Hassan, M., Larik, F. A., Mahmood, T., & Malik, A. (2019). Synthesis, antibacterial activity and molecular docking study of vanillin derived 1,4-disubstituted 1,2,3-triazoles as inhibitors of bacterial DNA synthesis. Heliyon, 5(11), e02812 https://doi.org/10.1016/j.heliyon.2019.e02812
  • Lirdprapamongkol, K., Sakurai, H., Kawasaki, N., Choo, M. K., Saitoh, Y., Aozuka, Y., Singhirunnusorn, P., Ruchirawat, S., Svasti, J., & Saiki, I. (2005). Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. European Journal of Pharmaceutical Sciences, 25(1), 57–65. https://doi.org/10.1016/j.ejps.2005.01.015
  • Luo, G., Chen, M., Lyu, W., Zhao, R., Xu, Q., You, Q., & Xiang, H. (2017). Design, synthesis, biological evaluation and molecular docking studies of novel 3-aryl-4-anilino-2H-chromen-2-one derivatives targeting ERα as anti-breast cancer agents. Bioorganic & Medicinal Chemistry Letters, 27(12), 2668–2673. https://doi.org/10.1016/j.bmcl.2017.04.029
  • Maurya, R. C., & Patel, P. (1999). Synthesis, magnetic and special studies of some novel metal complexes of Cu(II), Ni(II), Co(II), Zn(II), Nd(III), Th(IV), and UO2(VI) with Schiff bases derived from sulfa drugs, víz., sulfanilamide/sulfamerazine and o-vanillin. Spectroscopy Letters, 32(2), 213–236. https://doi.org/10.1080/00387019909349979
  • Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nature Reviews. Cancer, 9(5), 338–350. https://doi.org/10.1038/nrc2607
  • Sahoo, C. R., Paidesetty, S. K., Dehury, B., & Padhy, R. N. (2020). Molecular dynamics and computational study of Mannich-based coumarin derivatives: Potent tyrosine kinase inhibitor. Journal of Biomolecular Structure & Dynamics, 38(18), 5419–5428. https://doi.org/10.1080/07391102.2019.1701554
  • Sahoo, C. R., Paidesetty, S. K., & Padhy, R. N. (2019a). Norharmane as a potential chemical entity for development of anticancer drugs. European Journal of Medicinal Chemistry, 162, 752–764. https://doi.org/10.1016/j.ejmech.2018.11.024
  • Sahoo, C. R., Paidesetty, S. K., & Padhy, R. N. (2019b). Nornostocine congeners as potential anticancer drugs: An overview. Drug Development Research, 80(7), 878–892. https://doi.org/10.1002/ddr.21577
  • Sahoo, C. R., Patro, R., Sahoo, J., Padhy, R. N., & Paidesetty, S. K. (2019c). Design, molecular docking of synthesized Schiff-based thiazole/pyridine derivatives as potent antibacterial inhibitor. Indian Drugs, 56(11), 20–25.
  • Sahoo, C. R., Sahoo, J., Mahapatra, M., Lenka, D., Sahu, P. K., Dehury, B., Padhy, R. N., & Paidesetty, S. K. (2021). Coumarin derivatives as promising antibacterial agent (s). Arabian Journal of Chemistry, 14(2), 102922. https://doi.org/10.1016/j.arabjc.2020.102922
  • Sahoo, J., Sahoo, C. R., Nandini Sarangi, P. K., Prusty, S. K., Padhy, R. N., & Paidesetty, S. K. (2020). Molecules with versatile biological activities bearing antipyrinyl nucleus as pharmacophore. European Journal of Medicinal Chemistry, 186, 111911 https://doi.org/10.1016/j.ejmech.2019.111911
  • Sarathbabu, S., Marimuthu, S. K., Ghatak, S., Vidyalakshmi, S., Gurusubramanian, G., Ghosh, S. K., Subramanian, S., Zhang, W., & Kumar, N. S. (2019). Induction of apoptosis by pierisin-6 in HPV positive HeLa and HepG2 cancer cells is mediated by the caspase-3 dependent mitochondrial pathway. Anticancer Agents in Medicinal Chemistry, 19(3), 337–346. https://doi.org/10.2174/1871520619666181127113848
  • Subbarayan, S., Marimuthu, S. K., Nachimuthu, S. K., Zhang, W., & Subramanian, S. (2016). Characterization and cytotoxic activity of apoptosis-inducing pierisin-5 protein from white cabbage butterfly. International Journal of Biological Macromolecules, 87, 16–27. https://doi.org/10.1016/j.ijbiomac.2016.01.072
  • Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G., & Pettinari, R. (2013). Mixed-ligand Cu(II)-vanillin Schiff base complexes; Effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. European Journal of Medicinal Chemistry, 60, 216–232. https://doi.org/10.1016/j.ejmech.2012.08.019
  • Yadav, R., Saini, D., & Yadav, D. (2018). Synthesis and evaluation of vanillin derivatives as antimicrobial agents. Turkish Journal of Pharmaceutical Sciences, 15(1), 57–62. https://doi.org/10.4274/tjps.97752
  • Yousef, T. A., El-Reash, G. M. A., & El-Tabai, M. N. (2018). Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes. Journal of Molecular Structure, 1159, 246–258. https://doi.org/10.1016/j.molstruc.2018.01.003
  • Zhang, C., Li, X., Lian, L., Chen, Q., Abdulmalik, O., Vassilev, V., Lai, C. S., & Asakura, T. (2004). Anti-sickling effect of MX-1520, a prodrug of vanillin: An in vivo study using rodents. British Journal of Haematology, 125(6), 788–795. https://doi.org/10.1111/j.1365-2141.2004.04892.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.