406
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

N1 neuraminidase of H5N1 avian influenza A virus complexed with sialic acid and zanamivir – A study by molecular docking and molecular dynamics simulation

&
Pages 11434-11447 | Received 12 Feb 2021, Accepted 17 Jul 2021, Published online: 09 Aug 2021

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Amaro, R. E., Minh, D. D. L., Cheng, L. S., Lindstrom, W. M., Olson, A. J., Lin, J. H., Li, W. W., & McCammon, J. A. (2007). Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. Journal of the American Chemical Society, 129(25), 7764–7765. https://doi.org/10.1021/ja0723535
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Balgi, A. D., Wang, J., Cheng, D. Y. H., Ma, C., Pfeifer, T. A., Shimizu, Y., Anderson, H. J., Pinto, L. H., Lamb, R. A., Degrado, W. F., & Roberge, M. (2013). Inhibitors of the Influenza A Virus M2 Proton Channel Discovered Using a high-throughput yeast growth restoration assay. PLoS One, 8(2), e55271. https://doi.org/10.1371/journal.pone.0055271
  • Benkert, P., Tosatto Silvio, C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Bozdaganyan, M. E., Orekhov, P. S., Bragazzi, N. L., Panatto, D., Amicizia, D., Pechkova, E., Nicolini, C., & Gasparini, R. (2014). Docking and Molecular Dynamics (MD) Simulation in potential drug discovery: An application to Influenza virus M2 protein. American Journal of Biochemistry and Biotechnology, 10(3), 180–188. https://doi.org/10.3844/ajbbsp.2014.180.188
  • Burmeister, W. P., Ruigrok, R. W., & Cusack, S. (1992). The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. The EMBO Journal, 11(1), 49–56.
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., … Kollman, P. A. (2016). AMBER 2016. University of California.
  • Chang, T. T., Sun, M. F., Chen, H. Y., Tsai, F. J., Fisher, M., Lin, J. G., & Chen, C. Y. C. (2011). Novel hemagglutinin inhibitors for H1N1 influenza virus screening from TCM database. Molecular Simulation, 37(5), 361–368. https://doi.org/10.1080/08927022.2010.543973
  • Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J., Russell, R. J., Walker, P. A., Skehel, J. J., Martin, S. R., Hay, A. J., & Gamblin, S. J. (2008). Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature, 453(7199), 1258–1261. https://doi.org/10.1038/nature06956
  • Colombo, C., Pinto, B. M., Bernardi, A., & Bennet, A. J. (2016). Synthesis and evaluation of influenza A viral neuraminidase candidate inhibitors based on a bicycle [3.1.0] hexane scaffold. Organic & Biomolecular Chemistry, 14(27), 6539–6553. https://doi.org/10.1039/C6OB00999A
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717 https://doi.org/10.1038/srep42717
  • Das, P., Li, J., Royyuru, A. K., & Zhou, R. (2009). Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. J Comput Chem, 30(11), 1654–1663. https://doi.org/10.1002/jcc.21274
  • Doyle, S. (2011). Fungal proteomics: From identification to function. FEMS Microbiology Letters, 321(1), 1–9. https://doi.org/10.1111/j.1574-6968.2011.02292.x
  • Du, W., Dai, M., Li, Z., Boons, G. J., Peeters, B., van Kuppeveld, F. J. M., de Vries, E., & de Haan, C. A. M. (2018). Substrate binding by the second sialic acid–binding Site of Influenza A virus N1 neuraminidase contributes to enzymatic activity. Journal of Virology, 92(20), e01243–18. https://doi.org/10.1128/JVI.01243-18
  • Gallagher, J. R., Torian, U., McCraw, D. M., & Harris, A. K. (2017). Structural studies of influenza virus RNPs by electron microscopy indicate molecular contortions within NP supra-structures. Journal of Structural Biology, 197(3), 294–307. https://doi.org/10.1016/j.jsb.2016.12.007
  • Gamblin, S. J., & Skehel, J. J. (2010). Influenza hemagglutinin and neuraminidase membrane glycoproteins. Journal of Biological Chemistry, 285(37), 28403–28409. https://doi.org/10.1074/jbc.R110.129809
  • Gaymard, A., Briand, N. L., Frobert, E., Lina, B., & Escure, V. (2016). Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 22(12), 975–983. https://doi.org/10.1016/j.cmi.2016.07.007
  • Glanz, V. Y., Myasoedova, A. K., Grechko, A. V., & Orekhov, A. N. (2018). Inhibition of sialidase activity as a therapeutic approach. Drug Design, Development and Therapy, 12, 3431–3437. https://doi.org/10.2147/DDDT.S176220
  • Gong, J., Xu, W., & Zhang, J. (2007). Structure and functions of Influenza virus neuraminidase. Current Medicinal Chemistry, 14(1), 113–122. https://doi.org/10.2174/092986707779313444
  • Greener, J. G., & Sternberg, M. J. (2015). AlloPred: Prediction of allosteric pockets on proteins using normal mode perturbation analysis. BMC Bioinformatics, 16, 335. https://doi.org/10.1186/s12859-015-0771-1
  • Han, J., Perez, J., Schafer, A., Cheng, H., Peet, N., Rong, L., & Manicassamy, B. (2018). Influenza virus: Small molecule therapeutics and mechanisms of antiviral resistance. Current Medicinal Chemistry, 25(38), 5115–5125. https://doi.org/10.2174/0929867324666170920165926
  • Han, N., & Mu, Y. (2013). Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations. PLoS One, 8(4), e60995. https://doi.org/10.1371/journal.pone.0060995
  • Hijmans, R. J., & Etten, J. V. (2012). Raster: Geographic analysis and modeling with raster data. R package version 2.0–12. http://CRAN.R–project.org/package=raster.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ikematsu, H., Kawai, N., & Kashiwagi, S. (2012). In vitro neuraminidase inhibitory activities of four neuraminidase inhibitors against influenza viruses isolated in the 2010-2011 season in Japan. Journal of Infection and Chemotherapy : Official Journal of the Japan Society of Chemotherapy, 18(4), 529–533. https://doi.org/10.1007/s10156-012-0377-8
  • Janakiraman, M. N., White, C. L., Laver, W. G., Air, G. M., & Luo, M. (1994). Structure of Influenza virus neuraminidase B/Lee/40 complexed with sialic acid and a dehydro analog at 1.8-A resolution: Implications for the catalytic mechanism . Biochemistry, 33(27), 8172–8179. https://doi.org/10.1021/bi00193a002
  • Jeyaram, R. A., Priyadarzini, T. R. K., Radha, C. A., Shanmugam, N. R. S., Ramakrishnan, C., Gromiha, M. M., & Veluraja, K. (2019). Molecular dynamics simulation studies on influenza A virus H5N1 complexed with sialic acid and fluorinated sialic acid. Journal of Biomolecular Structure & Dynamics, 37(18), 4813–4824. https://doi.org/10.1080/07391102.2019.1568304
  • Jeyaram, R. A., Radha, C. A., Gromiha, M. M., & Veluraja, K. (2020). Design of fluorinated sialic acid analog inhibitor to H5 hemagglutinin of H5N1 influenza virus through molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 38(12), 3504–3513. https://doi.org/10.1080/07391102.2019.1677500
  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085
  • Kamali, A., & Holodniy, M. (2013). Influenza treatment and prophylaxis with neuraminidase inhibitors: A review. Infection and Drug Resistance, 6, 187–198.
  • Kannan, P., & Kolandaivel, P. (2018). The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. Journal of Biomolecular Structure & Dynamics, 36(16), 4255–4269. https://doi.org/10.1080/07391102.2017.1413422
  • Kim, C. U., Chen, X., & Mendel, D. B. (1999). Neuraminidase inhibitors as anti–influenza virus agents. Antiviral Chemistry and Chemotherapy, 10(4), 141–154. https://doi.org/10.1177/095632029901000401
  • Kim, C. U., Lew, W., Williams, M. A., Wu, H., Zhang, L., Chen, X., Escarpe, P. A., Mendel, D. B., Laver, W. G., & Stevens, R. C. (1998). Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. Journal of Medicinal Chemistry, 41(14), 2451–2460. https://doi.org/10.1021/jm980162u
  • Kraulis, P. J. (1991). MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. Journal of Applied Crystallography, 24(5), 946–950. https://doi.org/10.1107/S0021889891004399
  • Laskowski, R. A., Hutchinson, E. G., Michie, A. D., Wallace, A. C., Jones, M. L., & Thornton, J. M. (1997). PDBsum: A Web-based database of summaries and analyses of all PDB structures . Trends in Biochemical Sciences, 22(12), 488–490. https://doi.org/10.1016/s0968-0004(97)01140-7
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK - a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leang, S. K., & Hurt, A. C. (2017). Fluorescence–based neuraminidase inhibition assay to assess the susceptibility of Influenza viruses to the neuraminidase inhibitor class of antivirals. Journal of Visualized Experiments, 122, 55570. https://doi.org/10.3791/55570
  • Middleton, K., Zhang, G. P., Nichols, M. R., & George, T. F. (2012). A comparative first-principles study of structural and electronic properties among memantine, amantadine and rimantadine. Molecular Physics, 110(9–10), 685–689. https://doi.org/10.1080/00268976.2012.687467
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Modena, J. L. P., Macedo, I. S., & Arruda, E. (2007). H5N1 Avian influenza vrius: An overview. Brazilian Journal of Infectious Diseases, 11(1), 125–133. https://doi.org/10.1590/S1413-86702007000100027
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Orozovic, G., Orozovic, K., Järhult, J. D., & Olsen, B. (2014). Study of Oseltamivir and Zanamivir resistance-related mutations in influenza viruses isolated from wild mallards in Sweden. PLoS One, 9(2), e89306. https://doi.org/10.1371/journal.pone.0089306
  • Palomares, C. I., Flores, R. J., Moreno, L. V., Montfort, C. G. R., & Félix, E. A. (2011). Protein–carbohydrate interactions between Lactobacillus salivarius and pig mucins. Journal of Animal Science, 89(10), 3125–3131.
  • Panjkovich, A., & Daura, X. (2014). PARS: A web server for the prediction of Protein Allosteric and Regulatory Sites. Bioinformatics (Oxford, England), 30(9), 1314–1315. https://doi.org/10.1093/bioinformatics/btu002
  • Parasuraman, P., Murugan, V., Selvin, J. F. A., Gromiha, M. M., Fukui, K., & Veluraja, K. (2015). Theoretical investigation on the glycan-binding specificity of Agrocybe cylindracea galectin using molecular modeling and molecular dynamics simulation studies. Journal of Molecular Recognition : JMR, 28(9), 528–529. https://doi.org/10.1002/jmr.2468
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Pizzorno, A., Abed, Y., Bouhy, X., Beaulieu, E., Mallett, C., Russell, R., & Boivin, G. (2012). Impact of mutations at residue I223 of the neuraminidase protein on the resistance profile, replication level, and virulence of the 2009 pandemic influenza virus. Antimicrobial Agents and Chemotherapy, 56(3), 1208–1214. https://doi.org/10.1128/AAC.05994-11
  • Priyadarzini, T. R. K., Selvin, J. F. A., Gromiha, M. M., Fukui, K., & Veluraja, K. (2012b). Theoretical investigation on the binding specificity of sialyldisaccharides with hemagglutinins of influenza A virus by molecular dynamics simulations. The Journal of Biological Chemistry, 287(41), 34547–34557. https://doi.org/10.1074/jbc.M112.357061
  • Priyadarzini, T. R. K., Subashini, B., Selvin, J. F. A., & Veluraja, K. (2012a). Molecular dynamics simulation and quantum mechanical calculations on α-D-N-acetylneuraminic acid. Carbohydrate Research, 351, 93–97. https://doi.org/10.1016/j.carres.2012.01.015
  • Raab, M., & Tvaroska, I. (2011). The binding properties of the H5N1 influenza virus neuraminidase as inferred from molecular modeling. Journal of Molecular Modeling, 17(6), 1445–1456. https://doi.org/10.1007/s00894-010-0852-z
  • Rajao, D. S., Vincent, A. L., & Perez, D. R. (2018). Adaptation of human influenza viruses to swine. Frontiers in Veterinary Science, 5, 347. https://doi.org/10.3389/fvets.2018.00347
  • Ray, S., & Banerjee, A. (2018). Computational structural biology and modes of interaction between human annexin A6 with influenza A virus protein M2: A possible mechanism for reducing viral Infection. International Journal of Bioinformatics Research and Applications, 14(4), 321–336. https://doi.org/10.1504/IJBRA.2018.094960
  • Richards, M. R., Guo, T., Hunter, C. D., & Cairo, C. W. (2018). Molecular dynamics simulations of viral neuraminidase inhibitors with the human neuraminidase enzymes: Insights into isoenzyme selectivity. Bioorganic & Medicinal Chemistry, 26(19), 5349–5358. https://doi.org/10.1016/j.bmc.2018.05.035
  • Roe, D. R., & Cheatham, T. M. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., & Skehel, J. J. (2006). The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature, 443(7107), 45–49. https://doi.org/10.1038/nature05114
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER –Part II: Particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Selvin, J., F. A., Priyadarzini, T. R. K., & Veluraja, K. (2012). Sialyldisaccharide conformations: A molecular dynamics perspective. Journal of Computer-Aided Molecular Design, 26(4), 375–385. https://doi.org/10.1007/s10822-012-9563-0
  • Shu, M., Lin, Z., Zhang, Y., Wu, Y., Mei, H., & Jiang, Y. (2011). Molecular dynamics simulation of oseltamivir resistance in neuraminidase of avian influenza H5N1 virus. Journal of Molecular Modeling, 17(3), 587–592. https://doi.org/10.1007/s00894-010-0757-x
  • Spiwok, V., & Tvaroska, I. (2009). Conformational free energy surface of α-N-acetylneuranamic acid: An interplay between hydrogen bonding and solvation. The Journal of Physical Chemistry. B, 113(28), 9589–9594. https://doi.org/10.1021/jp8113495
  • Stuart, A. D., & Brown, T. D. (2007). Alpha2,6–linked sialic acid acts as a receptor for Feline calicivirus. Journal of General Virology, 88(1), 177–186. https://doi.org/10.1099/vir.0.82158-0
  • Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, G., Haas, J., & Schwede, T. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics (Oxford, England), 36(6), 1765–1771. https://doi.org/10.1093/bioinformatics/btz828
  • Tambunan, U. S. F., Parikesit, A. D., Unadi, Y. C., & Kerami, D. (2015). Designing cyclopentapeptide inhibitor of neuraminidase H5N1 virus through molecular and pharmacology simulations. Tsinghua Science and Technology, 20(5), 431–440. https://doi.org/10.1109/TST.2015.7297742
  • Tang, J., Zhang, J., Zhou, J., Zhu, W., Yang, L., Zou, S., Wei, H., Xin, L., Huang, W., & Li, X., Cheng, Y., & Wang, D. (2019). Highly pathogenic avian influenza H7N9 viruses with reduced susceptibility to neuraminidase inhibitors showed comparable replication capacity to their sensitive counterparts. Virology Journal, 16(1), 87. https://doi.org/10.1186/s12985-019-1194-9
  • Taylor, N. R., Cleasby, A., Singh, O., Skarzynski, T., Wonacott, A. J., Smith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Bethell, R., Colman, P., & Varghese, J. (1998). Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and Sialidase from Influenza Virus Types A and B. Journal of Medicinal Chemistry, 41(6), 798–807. https://doi.org/10.1021/jm9703754
  • Varghese, J. N., Epa, V. C., & Colman, P. (1995). Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase . Protein Science : A Publication of the Protein Society, 4(6), 1081–1087. https://doi.org/10.1002/pro.5560040606
  • Varghese, J. N., McKimm–Breschkin, J. L., Caldwell, J. B., Kortt, A. A., & Colman, P. M. (1992). The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins, 14(3), 327–332. https://doi.org/10.1002/prot.340140302
  • Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3–49. https://doi.org/10.1093/glycob/cww086
  • Vavricka, C. J., Liu, Y., Kiyota, H., Sriwilaijaroen, N., Qi, J., Tanaka, K., Wu, Y., Li, Q., Li, Y., Yan, J., Suzuki, Y., & Gao, G. F. (2013). Influenza neuraminidase operates via a nucleophilic mechanism and can be targeted by covalent inhibitors. Nature Communications, 4(1), 1491. https://doi.org/10.1038/ncomms2487
  • Veluraja, K., & Rao, V. S. R. (1980). Theoretical studies on the confirmation of β–DN–acetyl neuraminic acid (sialic acid). Biochimica et Biophysica Acta (Bba) - General Subjects, 630(3), 442–446. https://doi.org/10.1016/0304-4165(80)90293-7
  • Veluraja, K., Selvin, J. F. A., Venkateshwari, S., & Priyadarzini, T. R. K. (2010). 3DSDSCAR-a three dimensional structural database for sialic acid-containing carbohydrates through molecular dynamics simulation. Carbohydrate Research, 345(14), 2030–2037. https://doi.org/10.1016/j.carres.2010.06.021
  • von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. V., Smyth, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Wood, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M., & Penn, C. R. (1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 363(6428), 418–423. https://doi.org/10.1038/363418a0
  • Yang, Z., Wu, F., Liu, J., Wang, S., & Yuan, X. (2013). Susceptibility of commercial neuraminidase inhibitor against 2013 A/H7N9 influenza virus: A docking and molecular dynamics study. Journal of Theoretical and Computational Chemistry, 12(07), 1350069. https://doi.org/10.1142/S0219633613500697

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.