627
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A combinatorial approach to screen structurally diverse acetylcholinesterase inhibitory plant secondary metabolites targeting Alzheimer’s disease

, & ORCID Icon
Pages 11705-11718 | Received 12 Mar 2021, Accepted 26 Jul 2021, Published online: 05 Aug 2021

References

  • Abbas-Mohammadi, M., Farimani, M. M., Salehi, P., Ebrahimi, S. N., Sonboli, A., Kelso, C., & Skropeta, D. (2018). Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. Journal of Pharmaceutical and Biomedical Analysis, 158, 471–479. https://doi.org/10.1016/j.jpba.2018.06.026
  • Ali, R., Rahim, A., & Islam, A. (2017). Synthesis and antimicrobial activity of 7-hydroxy-3’, 4'-methylenedioxy-and 7-benzyloxy-3’, 4'-methylenedioxy flavanones. Journal of Scientific Research, 9(3), 297–306. https://doi.org/10.3329/jsr.v9i3.31229
  • Al-Snafi, A. E. (2016). A review on Cyperus rotundus A potential medicinal plant. IOSR Journal of Pharmacy (IOSRPHR), 06(07), 32–48. https://doi.org/10.9790/3013-06723248
  • Alvarez, A., Opazo, C., Alarcón, R., Garrido, J., & Inestrosa, N. C. (1997). Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils . Journal of Molecular Biology, 272(3), 348–361. https://doi.org/10.1006/jmbi.1997.1245
  • Anand, P., & Bley, K. (2011). Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. British Journal of Anaesthesia, 107(4), 490–502. https://doi.org/10.1093/bja/aer260
  • Ara, I., Siddiqui, B. S., Faizi, S., & Siddiqui, S. (1989). Structurally novel diterpenoid constituents from the stem bark of Azadirachta indica (Meliaceae). Journal of the Chemical Society, Perkin Transactions 1, (2), 343–345. https://doi.org/10.1039/p19890000343
  • Bajpai, V. K., & Kang, S. C. (2014). A diterpenoid sugiol from Metasequoia glyptostroboides with α-glucosidase and tyrosinase inhibitory potential. Bangladesh Journal of Pharmacology, 9(3), 312–316. https://doi.org/10.3329/bjp.v9i3.19026
  • Behra, M., Cousin, X., Bertrand, C., Vonesch, J.-L., Biellmann, D., Chatonnet, A., & Strähle, U. (2002). Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nature Neuroscience, 5(2), 111–118. https://doi.org/10.1038/nn788
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. W. H. Freeman and Company: New York.
  • Bero, J., Frédérich, M., & Quetin‐Leclercq, J. (2010). Antimalarial compounds isolated from plants used in traditional medicine. Journal of Pharmacy and Pharmacology, 61(11), 1401–1433. https://doi.org/10.1211/jpp.61.11.0001
  • Bhadra, S., Dalai, M. K., Chanda, J., & Mukherjee, P. K. (2015). Evaluation of bioactive compounds as acetylcholinesterase inhibitors from medicinal plants. In P. K. Mukherjee (Ed.), Evidence-based validation of herbal medicine (pp. 273–306). Elsevier.
  • Bi, X., Zhao, Y., Fang, W., & Yang, W. (2009). Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling . Clinical and Experimental Pharmacology & Physiology, 36(11), 1074–1078. https://doi.org/10.1111/j.1440-1681.2009.05203.x
  • Bigbee, J. W., Sharma, K. V., Gupta, J. J., & Dupree, J. L. (1999). Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environmental Health Perspectives, 107(suppl 1), 81–87. https://doi.org/10.1289/ehp.99107s181
  • Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science-Bangalore, 82(11), 1336–1345.
  • Calcul, L., Zhang, B., Jinwal, U. K., Dickey, C. A., & Baker, B. J. (2012). Natural products as a rich source of tau-targeting drugs for Alzheimer's disease. Future Medicinal Chemistry, 4(13), 1751–1761. https://doi.org/10.4155/fmc.12.124
  • Castro, A. L. G., Cruz, J. N., Sodré, D. F., Correa-Barbosa, J., Azonsivo, R., de Oliveira, M. S., de Sousa Siqueira, J. E., da Rocha Galucio, N. C., de Oliveira Bahia, M., Burbano, R. M. R., do Rosário Marinho, A. M., Percário, S., Dolabela, M. F., & Vale, V. V. (2021). Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb using bioassays and in silico approaches. Arabian Journal of Chemistry, 14(4), 103084. https://doi.org/10.1016/j.arabjc.2021.103084
  • Chao, K.-P., Hua, K.-F., Hsu, H.-Y., Su, Y.-C., & Chang, S.-T. (2005). Anti-inflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana bark. Planta Medica, 71(4), 300–305. https://doi.org/10.1055/s-2005-864094
  • Chitra, V., & Kumar, K. P. (2009). Neuroprotective studies of Rubia cordifolia Linn. on β-amyloid induced cognitive dysfunction in mice. International Journal of PharmTech Research, 1(4), 1000–1009.
  • Cimanga, K., De Bruyne, T., Pieters, L., Vlietinck, A. J., & Turger, C. A. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 60(7), 688–691. https://doi.org/10.1021/np9605246
  • Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159X11311030006
  • Costa, E. B., Silva, R. C., Espejo-Roman, J. M., Neto, M. F. d, A., Cruz, J. N., Leite, F. H. A., Silva, C. H. T. P., Pinheiro, J. C., Macedo, W. J. C., & Santos, C. B. R. (2020). Chemometric methods in antimalarial drug design from 1,2,4,5-tetraoxanes analogues. SAR and QSAR in Environmental Research, 31(9), 677–619. https://doi.org/10.1080/1062936X.2020.1803961
  • Craft, S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66(3), 300–305. https://doi.org/10.1001/archneurol.2009.27
  • Crowch, C. M., & Okello, E. J. (2009). Kinetics of acetylcholinesterase inhibitory activities by aqueous extracts of Acacia nilotica (L.) and Rhamnus prinoides (LHr.). African Journal of Pharmacy and Pharmacology, 3(10), 469–475.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Das, A. M. (2017). Clinical utility of nitisinone for the treatment of hereditary tyrosinemia type-1 (HT-1). The Application of Clinical Genetics, 10, 43–48. https://doi.org/10.2147/TACG.S113310
  • Dassonneville, L., Bonjean, K., De Pauw-Gillet, M.-C., Colson, P., Houssier, C., Quetin-Leclercq, J., Angenot, L., & Bailly, C. (1999). Stimulation of topoisomerase II-mediated DNA cleavage by three DNA-intercalating plant alkaloids: Cryptolepine, matadine, and serpentine. Biochemistry, 38(24), 7719–7726. https://doi.org/10.1021/bi990094t
  • Duval, N., Massoulié, J., & Bon, S. (1992). H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. The Journal of Cell Biology, 118(3), 641–653. https://doi.org/10.1083/jcb.118.3.641
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1–3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Esposito, G., De Filippis, D., Carnuccio, R., Izzo, A. A., & Iuvone, T. (2006). The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. Journal of Molecular Medicine (Berlin, Germany), 84(3), 253–258. https://doi.org/10.1007/s00109-005-0025-1
  • Forkuo, A. D., Ansah, C., Pearson, D., Gertsch, W., Cirello, A., Amaral, A., Spear, J., Wright, C. W., & Rynn, C. (2017). Identification of cryptolepine metabolites in rat and human hepatocytes and metabolism and pharmacokinetics of cryptolepine in Sprague Dawley rats. BMC Pharmacology & Toxicology, 18(1), 84–89. https://doi.org/10.1186/s40360-017-0188-8
  • Geldmacher, D. S., & Whitehouse, P. J. (1996). Evaluation of dementia. The New England Journal of Medicine, 335(5), 330–336. https://doi.org/10.1056/NEJM199608013350507
  • Gerlits, O., Kong, X., Cheng, X., Wymore, T., Blumenthal, D. K., Taylor, P., Radić, Z., & Kovalevsky, A. (2019). Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. The Journal of Biological Chemistry, 294(27), 10607–10618. https://doi.org/10.1074/jbc.RA119.008725
  • Gilani, A. H., Ghayur, M. N., Saify, Z. S., Ahmed, S. P., Choudhary, M. I., & Khalid, A. (2004). Presence of cholinomimetic and acetylcholinesterase inhibitory constituents in betel nut. Life Sciences, 75(20), 2377–2389. https://doi.org/10.1016/j.lfs.2004.03.035
  • Gonneaud, J., Arenaza-Urquijo, E. M., Mézenge, F., Landeau, B., Gaubert, M., Bejanin, A., de Flores, R., Wirth, M., Tomadesso, C., Poisnel, G., Abbas, A., Desgranges, B., & Chételat, G. (2017). Increased florbetapir binding in the temporal neocortex from age 20 to 60 years. Neurology, 89(24), 2438–2446. https://doi.org/10.1212/WNL.0000000000004733
  • Grimaldi, M., Marino, S. D., Florenzano, F., Ciotta, M. T., Nori, S. L., Rodriquez, M., Sorrentino, G., D'Ursi, A. M., & Scrima, M. (2016). β-Amyloid-acetylcholine molecular interaction: New role of cholinergic mediators in anti-Alzheimer therapy? Future Medicinal Chemistry, 8(11), 1179–1189. https://doi.org/10.4155/fmc-2016-0006
  • Hao, C., Zhang, X., Zhang, H., Shang, H., Bao, J., Wang, H., & Li, Z. (2018). Sugiol (12-hydroxyabieta-8, 11, 13-trien-7-one) targets hu-man pancreatic carcinoma cells (Mia-PaCa2) by inducing apoptosis, G2/M cell cycle arrest, ROS production and inhibition of cancer cell migration. Journal of BUON, 23(1), 205–210.
  • Irawanto, M. E., Arrochman, F., Bhadra, P., Nareswari, A., Pk, H., Yustin, E., Utomo, D. H., Ramadhani, A. N., & Margiana, R. (2020). Cyperous rotundus active compounds for psoriasis therapy with in silico analysis. European Journal of Molecular & Clinical Medicine, 7(6), 1266–1272.
  • Irwin, R., & Smith, H. III, (1960). Cholinesterase inhibition by galanthamine and lycoramine. Biochemical Pharmacology, 3(2), 147–148. https://doi.org/10.1016/0006-2952(60)90030-7
  • Jagetia, G. C. (2017). Phytochemical Composition and pleotropic pharmacological properties of jamun, Syzygium cumini skeels. Journal of Exploratory Research in Pharmacology, 2(2), 54–66. https://doi.org/10.14218/JERP.2016.00038
  • Jung, S.-H., Kim, S. J., Jun, B.-G., Lee, K.-T., Hong, S.-P., Oh, M. S., Jang, D. S., & Choi, J.-H. (2013). α-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NFκB signalling in RAW 264.7 cells. Journal of Ethnopharmacology, 147(1), 208–214. https://doi.org/10.1016/j.jep.2013.02.034
  • Kamada, H., Okamura, N., Satake, M., Harada, H., & Shimomura, K. (1986). Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Reports, 5(4), 239–242. https://doi.org/10.1007/BF00269811
  • Kaushik, P., Kaushik, D., Sharma, N., & Rana, A. (2011). Alstonia scholaris: It’s Phytochemistry and pharmacology. Chronicles of Young Scientists, 2(2), 71. https://doi.org/10.4103/2229-5186.82970
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Klayman, D. L. (1985). Qinghaosu (artemisinin): An antimalarial drug from China. Science (New York, N.Y.), 228(4703), 1049–1055. https://doi.org/10.1126/science.3887571
  • Koenigsberger, C., Hammond, P., & Brimijoin, S. (1998). Developmental expression of acetyl-and butyrylcholinesterase in the rat: Enzyme and mRNA levels in embryonic dorsal root ganglia. Brain Research, 787(2), 248–258. https://doi.org/10.1016/S0006-8993(97)01507-2
  • Kumar, P., Swarnalakshmi, M., & Sivanandham, M. (2015). Phytochemical analysis of Boerhaavia diffusa, Emblica officinalis, Terminilia chebula, Terminilia bellirica, Withania somnifera. World Journal of Pharmaceutical Research, 4, 1747–1756.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Leão, R. P., Cruz, J. V., da Costa, G. V., Cruz, J. N., Ferreira, E., Silva, R. C., de Lima, L. R., Borges, R. S., Dos Santos, G. B., & Santos, C. (2020). Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: A bioinformatics approach. Pharmaceuticals (Basel, Switzerland), 13(9), 209. https://doi.org/10.3390/ph13090209
  • Mukherjee, P., Kumar, V., & Houghton, P. (2007). Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytotherapy Research : PTR, 21(12), 1142–1145. https://doi.org/10.1002/ptr.2224
  • Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer's disease therapy. Current Neuropharmacology, 11(4), 388–413. https://doi.org/10.2174/1570159X11311040004
  • Naim, M. J., Alam, O., Nawaz, M. F., Alam, J., & Alam, P. (2016). Current status of pyrazole and its biological activities. Journal of Pharmacy & Bioallied Sciences, 8(1), 2–17. https://doi.org/10.4103/0975-7406.171694
  • Nguyen, K. V., Ho, D. V., Le, N. T., Van Phan, K., Heinämäki, J., Raal, A., & Nguyen, H. T. (2020). Flavonoids and alkaloids from the rhizomes of Zephyranthes ajax Hort. and their cytotoxicity. Scientific Reports, 10(1), 22193–22196. https://doi.org/10.1038/s41598-020-78785-2
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Olajide, O., de Oliveira, A. P., Unekwe, J., Wright, C., & Fiebich, B. (2010). Cryptolepis sanguinolenta (Lindl.) Schltr. root extract inhibits prostaglandin production in IL-1b stimulated SK-N-SH neuronal cells. Planta Medica, 76(12), P601. https://doi.org/10.1055/s-0030-1264899
  • Pande, M., Dubey, V. K., Yadav, S. C., & Jagannadham, M. V. (2006). A novel serine protease cryptolepain from Cryptolepis buchanani: Purification and biochemical characterization. Journal of Agricultural and Food Chemistry, 54(26), 10141–10150. https://doi.org/10.1021/jf062206a
  • Pereira, D. M., Ferreres, F., Oliveira, J. M., Gaspar, L., Faria, J., Valentão, P., Sottomayor, M., & Andrade, P. B. (2010). Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 17(8–9), 646–652. https://doi.org/10.1016/j.phymed.2009.10.008
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pugazhendhi, A., Shafreen, R. B., Devi, K. P., & Suganthy, N. (2018). Assessment of antioxidant, anticholinesterase and antiamyloidogenic effect of Terminalia chebula, Terminalia arjuna and its bioactive constituent 7-methyl gallic acid–an in vitro and in silico studies. Journal of Molecular Liquids, 257, 69–81. https://doi.org/10.1016/j.molliq.2018.02.081
  • Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., Ahamed, F., & Chauhan, L. (2020). In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific Reports, 10(1), 20584–20524. https://doi.org/10.1038/s41598-020-77602-0
  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128.
  • Rohela, G. K., Bylla, P., Korra, R., & Reuben, C. (2016). Phytochemical screening and antimicrobial activity of leaf, stem, root and their callus extracts in Rauwolfia tetraphylla. International Journal of Agriculture & Biology, 18(3), 521–528. https://doi.org/10.17957/IJAB/15.0120
  • Saha, M. R., Dey, P., Begum, S., De, B., Chaudhuri, T. K., Sarker, D. D., Das, A. P., & Sen, A. (2016). Effect of Acacia catechu (Lf) Willd. on oxidative stress with possible implications in alleviating selected cognitive disorders. PloS One, 11(3), e0150574. https://doi.org/10.1371/journal.pone.0150574
  • Sancheti, S., Sancheti, S., Um, B.-H., & Seo, S.-Y. (2010). 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose: A cholinesterase inhibitor from Terminalia chebula. South African Journal of Botany, 76(2), 285–288. https://doi.org/10.1016/j.sajb.2009.11.006
  • Scariot, D. B., Volpato, H., Fernandes, N. d S., Soares, E. F. P., Ueda-Nakamura, T., Dias-Filho, B. P., Din, Z. U., Rodrigues-Filho, E., Rubira, A. F., Borges, O., Sousa, M. D. C., & Nakamura, C. V. (2019). Activity and cell-death pathway in leishmania infantum induced by sugiol: Vectorization using yeast cell wall particles obtained from Saccharomyces cerevisiae. Frontiers in Cellular and Infection Microbiology, 9, 208. https://doi.org/10.3389/fcimb.2019.00208
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Selvaraj, J. (2018). Identification of new antidiabetic agents targeting GLUT4 protein using in silico analysis. International Journal of Green Pharmacy, 12(04), 876–882. https://doi.org/10.22377/ijgp.v12i04.2269
  • Seo, E. J., Lee, D.-U., Kwak, J. H., Lee, S.-M., Kim, Y. S., & Jung, Y.-S. (2011). Antiplatelet effects of Cyperus rotundus and its component (+)-nootkatone. Journal of Ethnopharmacology, 135(1), 48–54. https://doi.org/10.1016/j.jep.2011.02.025
  • Shafeek, A., Prasanthi, R. J., Reddy, G. H., Chetty, C., & Reddy, G. R. (2004). Alterations in acetylcholinesterase and electrical activity in the nervous system of cockroach exposed to the neem derivative, azadirachtin. Ecotoxicology and Environmental Safety, 59(2), 205–208. https://doi.org/10.1016/j.ecoenv.2003.07.016
  • Sharma, P., Shukla, A., Kalani, K., Dubey, V., Luqman, S., Srivastava, S. K., & Khan, F. (2017). In-silico & in-vitro identification of structure-activity relationship pattern of serpentine & gallic acid targeting PI3Kγ as potential anticancer target. Current Cancer Drug Targets, 17(8), 722–734. https://doi.org/10.2174/1568009617666170330152617
  • Sharma, R., & Gupta, R. (2007). Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato. Life Sciences, 80(24–25), 2389–2392. https://doi.org/10.1016/j.lfs.2007.01.060
  • Siddiqui, S. N., & Patil, M. B. (2015). Assessment of antioxidant and cytotoxic activities of extracts of some Ziziphus species with identification of bioactive components. European Journal of Medicinal Plants, 8(4), 202–213. https://doi.org/10.9734/EJMP/2015/17351
  • Silva, S. G., da Costa, R. A., de Oliveira, M. S., da Cruz, J. N., Figueiredo, P., Brasil, D., Nascimento, L. D., Chaves Neto, A., de Carvalho Junior, R. N., & Andrade, E. (2019). Chemical profile of Lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PloS One, 14(3), e0213393. https://doi.org/10.1371/journal.pone.0213393
  • Simon, S., Krejci, E., & Massoulie, J. (1998). A four-to-one association between peptide motifs: Four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway . The EMBO Journal, 17(21), 6178–6187. https://doi.org/10.1093/emboj/17.21.6178
  • Skariyachan, S., Manjunath, M., & Bachappanavar, N. (2019). Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii - insights from molecular docking, molecular dynamic simulations and in vitro assays . Journal of Biomolecular Structure & Dynamics, 37(5), 1146–1169. https://doi.org/10.1080/07391102.2018.1451387
  • Somani, G., Kulkarni, C., Shinde, P., Shelke, R., Laddha, K., & Sathaye, S. (2015). In vitro acetylcholinesterase inhibition by psoralen using molecular docking and enzymatic studies. Journal of Pharmacy & Bioallied Sciences, 7(1), 32–36. https://doi.org/10.4103/0975-7406.148775
  • Soni, N., Singh, D. K., & Singh, V. K. (2017). Inhibition Kinetics of Acetylcholinesterase and Phosphatases by the Active Constituents of Terminalia arjuna and Tamarindus indica in the Cerebral Ganglion of Lymnaea acuminata. Pharmacognosy Journal, 9(2), 148–156. https://doi.org/10.5530/pj.2017.2.25
  • Soreq, H., & Seidman, S. (2001). Acetylcholinesterase-new roles for an old actor. Nature Reviews Neuroscience, 2(4), 294–302. https://doi.org/10.1038/35067589
  • Srinivasan, M., Sambaiah, K., Satyanarayana, M., & Rao, M. (1980). Influence of red pepper and capsaicin on growth, blood constituents and nitrogen balance in rats. Nutrition Reports International, 21(3), 455–467.
  • Stell, J. G. P., Wheelhouse, R. T., & Wright, C. W. (2012). Metabolism of cryptolepine and 2-fluorocryptolepine by aldehyde oxidase . The Journal of Pharmacy and Pharmacology, 64(2), 237–243. https://doi.org/10.1111/j.2042-7158.2011.01408.x
  • Suganthy, N., Ramkumar, V. S., Pugazhendhi, A., Benelli, G., & Archunan, G. (2018). Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: Assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environmental Science and Pollution Research International, 25(11), 10418–10433. https://doi.org/10.1007/s11356-017-9789-4
  • Tafesse, T. B., Hymete, A., Mekonnen, Y., & Tadesse, M. (2017). Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complementary and Alternative Medicine, 17(1), 1–9. https://doi.org/10.1186/s12906-017-1757-5
  • Tan, M. C. S., Carranza, M. S. S., Linis, V. C., Malabed, R. S., & Oyong, G. G. (2019). Antioxidant, Cytotoxicity, and Antiophidian Potential of Alstonia macrophylla Bark. ACS Omega, 4(5), 9488–9496. https://doi.org/10.1021/acsomega.9b00082
  • Thakur, P. K., Kumar, J., Ray, D., Anjum, F., & Hassan, M. I. (2013). Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. Journal of Natural Science, Biology, and Medicine, 4(1), 51–56. https://doi.org/10.4103/0976-9668.107260
  • Tönnies, E., & Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer's Disease. Journal of Alzheimer's Disease : JAD, 57(4), 1105–1121. https://doi.org/10.3233/JAD-161088
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., & Raghava, G. (2013). In silico models for designing and discovering novel anticancer peptides. Scientific Reports, 3, 2984. https://doi.org/10.1038/srep02984
  • Valsaraj, R., Pushpangadan, P., Smitt, U. W., Adsersen, A., Christensen, S. B., Sittie, A., Nyman, U., Nielsen, C., & Olsen, C. E. (1997). New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. Journal of Natural Products, 60(7), 739–742. https://doi.org/10.1021/np970010m
  • van Gunsteren, W. F., Billeter, S., Eising, A., Hünenberger, P., Krüger, P., Mark, A., Scott, W., & Tironi, I. (1996). Biomolecular simulation: The GROMOS96 manual and user guide (Vol. 86). Vdf Hochschulverlag AG an der ETH Zürich.
  • Velander, P., Wu, L., Henderson, F., Zhang, S., Bevan, D. R., & Xu, B. (2017). Natural product-based amyloid inhibitors. Biochemical Pharmacology, 139, 40–55. https://doi.org/10.1016/j.bcp.2017.04.004
  • Wang, B., Zhu, H.-T., Wang, D., Yang, C.-R., Xu, M., & Zhang, Y.-J. (2013). New spinosin derivatives from the seeds of Ziziphus mauritiana. Natural Products and Bioprospecting, 3(3), 93–98. https://doi.org/10.1007/s13659-013-0028-5
  • Waymire, J. C. (2020). Neuroscience online. https://nba.uth.tmc.edu/neuroscience/s1/chapter11.html
  • Wilson, I. B., & Harrison, M. (1961). Turnover number of acetylcholinesterase. Journal of Biological Chemistry, 236(8), 2292–2295. https://doi.org/10.1016/S0021-9258(18)64073-6
  • Yi, S., Huang, Y., Yu, S.-Z., Chen, X.-J., Yi, H., & Zeng, X.-L. (2015). Therapeutic effect of atropine 1% in children with low myopia. Journal of American Association for Pediatric Ophthalmology and Strabismus, 19(5), 426–429. https://doi.org/10.1016/j.jaapos.2015.04.006
  • Zhang, P., Fuentes, S., Wang, Y., Deng, R., Krstic, M., Herderich, M., Barlow, E. W., & Howell, K. (2016). Distribution of rotundone and possible translocation of related compounds amongst grapevine tissues in Vitis vinifera L. cv. Shiraz. Frontiers in Plant Science, 7, 859. https://doi.org/10.3389/fpls.2016.00859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.