196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico trials to design potent inhibitors against matrilysin (MMP-7)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11851-11862 | Received 15 Nov 2020, Accepted 02 Aug 2021, Published online: 18 Aug 2021

References

  • Aamir, M., Singh, V. K., Dubey, M. K., Meena, M., Kashyap, S. P., Katari, S. K., Upadhyay, R. S., Umamaheswari, A., & Singh, S. (2018). In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against fusarium wilt in tomato. Frontiers in Pharmacology, 9, 1038. https://doi.org/10.3389/fphar.2018.01038
  • Atkinson, S. J., Crabbe, T., Cowell, S., Ward, R. V., Butler, M. J., Sato, H., Seiki, M., Reynolds, J. J., & Murphy, G. (1995). Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem, 270 (51), 30479–30485. https://doi.org/10.1074/jbc.270.51.30479
  • Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J., & Friesner, R. A. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142. https://doi.org/10.1002/qua.24481
  • Brooks, W. H., Daniel, K. G., Sung, S. S., & Guida, W. C. (2008). Computational validation of the importance of absolute stereochemistry in virtual screening. Journal of Chemical Information and Modeling, 48 (3), 639–645. https://doi.org/10.1021/ci700358r
  • Carrieri, A., Pérez-Nueno, V. I., Fano, A., Pistone, C., Ritchie, D. W., & Teixidó, J. (2009). Biological profiling of anti-HIV agents and insight into CCR5 antagonist binding using in silico techniques. ChemMedChem, 4 (7), 1153–1163. https://doi.org/10.1002/cmdc.200900101
  • Chen, J., & Lai, L. (2006). Pocket v.2: Further developments on receptor-based pharmacophore modeling. Journal of Chemical Information and Modeling, 46 (6), 2684–2691. https://doi.org/10.1021/ci600246s
  • Chiranjeevi, P., Sandeep, S., Pradeep, N., Hema, K., Sudheer Kumar, K., Ravina Madhulitha, N., & Umamaheswari, A. (2016). Inhibitor Design for VacA Toxin of Helicobacter pylori. Journal of Proteomics Bioinformatics, 9 (9), 220–225.
  • Cho, A. E., Guallar, V., Berne, B., & Friesner, R. A. (2005). Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal of Computational Chemistry, 26(9), 915–931. https://doi.org/10.1002/jcc.20222
  • Crabbe, T., Ioannou, C., & Docherty, A. J. (1993). Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. European Journal of Biochemistry, 218 (2), 431–438. https://doi.org/10.1111/j.1432-1033.1993.tb18393.x
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N. Log (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, D., Koh, Y., Tojo, Y., Ghosh, A. K., & Mitsuya, H. (2009). Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model. Journal of Chemical Information and Modeling, 49 (12), 2851–2862. https://doi.org/10.1021/ci900320p
  • de Beer, T. A., Berka, K., Thornton, J. M., & Laskowski, R. A. (2014). PDBsum additions. Nucleic Acids Research, 42(Database issue), D292–D296. https://doi.org/10.1093/nar/gkt940
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A New Engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
  • Fanjul-FernáNdez, M., Folgueras, A. R., Cabrera, S., & López-Otín, C. (2010). Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta, 1803 (1), 3–19. https://doi.org/10.1016/j.bbamcr.2009.07.004
  • Farid, R., Day, T., Friesner, R. A., & Pearlstein, R. A. (2006). New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorganic & Medicinal Chemistry, 14(9), 3160–3173. https://doi.org/10.1016/j.bmc.2005.12.032
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution . Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hayes, J. M., Skamnaki, V. T., Archontis, G., Lamprakis, C., Sarrou, J., Bischler, N., Skaltsounis, A.-L., Zographos, S. E., & Oikonomakos, N. G. (2011). Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: The role of water molecules examined. Proteins, 79(3), 703–719. https://doi.org/10.1002/prot.22890
  • Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y., & Shinomura, Y. (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Experimental Biology and Medicine (Maywood, N.J.), 231 (1), 20–27. https://doi.org/10.1177/153537020623100103
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of crystal packing forces in determining protein sidechain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/S0022-2836(02)00470-9
  • Katari, S. K., Natarajan, P., Swargam, S., Kanipakam, H., Pasala, C., & Umamaheswari, A. (2016). Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. Journal of Receptor and Signal Transduction Research, 36 (6), 558–571. https://doi.org/10.3109/10799893.2016.1141955
  • Katari, S. K., Pasala, C., Nalamolu, R. M., Vankadoth, U. N., Alexander, S. P., Pakala, S. R., Bitla, A. R., & Umamaheswari, A. (2019). Pathophysiology of matrix metalloproteinases in breast cancer progression. Journal of Clinical and Scientific Research, 8 (3), 145–150. doi: https://doi.org/10.4103/JCSR.JCSR_67_19
  • Kevin, J. B., Edmond, C., Huafeng, X., Ron, O. D., Michael, P., Eastwood, B. A., Gregersen, John, L. K., I., Kolossvary, Mark, A. M., Federico, D. S., John, K., Yibing, S., & Shaw, D. E. 2006. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, November 11–17.
  • Kirchmair, J., Distinto, S., Markt, P., Schuster, D., Spitzer, G. M., Liedl, K. R., & Wolber, G. (2009). How to optimize shape-based virtual screening: Choosing the right query and including chemical information. Journal of Chemical Information and Modeling, 49 (3), 678–692. https://doi.org/10.1021/ci8004226
  • Krishna, V. S., Zheng, S., Rekha, E. M., Guddat, L. W., & Sriram, D. (2019). Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. Journal of Computer-Aided Molecular Design, 33 (3), 357–366. https://doi.org/10.1007/s10822-019-00184-1
  • Li, J., Brick, P., O'Hare, M. C., Skarzynski, T., Lloyd, L. F., Curry, V. A., Clark, I. M., Bigg, H. F., Hazleman, B. L., Cawston, T. E., & Blow, D. M. (1995). Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure, 3(6), 541–549. https://doi.org/10.1016/S0969-2126(01)00188-5
  • Libson, A. M., Gittis, A. G., Collier, I. E., Marmer, B. L., Goldberg, G. I., & Lattman, E. E. (1995). Crystal structure of the haemopexin-like C-terminal domain of gelatinase A. Nature Structural Biology, 2 (11), 938–942. https://doi.org/10.1038/nsb1195-938
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49 (16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Morrison, C. J., Butler, G. S., Rodríguez, D., & Overall, C. M. (2009). Matrix metalloproteinase proteomics: Substrates, targets, and therapy. Current Opinion in Cell Biology, 21 (5), 645–653. https://doi.org/10.1016/j.ceb.2009.06.006
  • Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O'Connell, J. P., & Docherty, A. J. (1992). The role of the C-terminal domain in collagenase and stromelysin specificity. Journal of Biological Chemistry, 267 (14), 9612–9618. https://doi.org/10.1016/S0021-9258(19)50134-X
  • Murphy, R. B., Philipp, D. M., & Friesner, R. A. (2000). A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. Journal of Computational Chemistry, 21(16), 1442–1457. https://doi.org/10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-O
  • Nagase, H., Enghild, J. J., Suzuki, K., & Salvesen, G. (1990). Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry, 29 (24), 5783–5789. https://doi.org/10.1021/bi00476a020
  • Natarajan, P., Priyadarshini, V., Pradhan, D., Manne, M., Swargam, S., Kanipakam, H., Bhuma, V., & Amineni, U. (2016). E-pharmacophore-based virtual screening to identify GSK-3β inhibitors. Journal of Receptor and Signal Transduction Research, 36 (5), 445–458. https://doi.org/10.3109/10799893.2015.1122043
  • Palakurti, R., Sriram, D., Yogeeswari, P., & Vadrevu, R. (2013). Multiple e-pharmacophore modeling combined with high-throughput virtual screening and docking to identify potential inhibitors of β-secretase(BACE1). Molecular Informatics, 32 (4), 385–398. https://doi.org/10.1002/minf.201200169
  • Pasala, C., Katari, S. K., Nalamolu, R. M., Bitla, A. R., & Amineni, U. (2019). Hierarchical-clustering, scaffold-mining exercises and dynamics simulations for effectual inhibitors against lipid-A biosynthesis of Helicobacter pylori. Cellular and Molecular Bioengineering, 12 (3), 255–274. https://doi.org/10.1007/s12195-019-00572-5
  • Pérez-Nueno, V. I., Pettersson, S., Ritchie, D. W., Borrell, J. I., & Teixidó, J. (2009). Discovery of novel HIV entry inhibitors for the CXCR4 receptor by prospective virtual screening. Journal of Chemical Information and Modeling, 49 (4), 810–823. https://doi.org/10.1021/ci800468q
  • Ravina Madhulitha, N., Pradeep, N., Sandeep, S., Hema, K., Chiranjeevi, P., Sudheer Kumar, K., & Umamaheswari, A. (2017). E-pharmacophore model assisted discovery of novel antagonists of nNOS. Biochemistry and Analytical Biochemistry, 6 (1), 1–9. https://doi.org/10.4172/2161-1009.1000307
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of nalkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salam, N. K., Nuti, R., & Sherman, W. (2009). Novel method for generating structure-based pharmacophores using energetic analysis. Journal of Chemical Information and Modeling, 49(10), 2356–2368. https://doi.org/10.1021/ci900212v
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schrödinger Release 2019. (2019a). Maestro. Schrödinger LLC.
  • Schrödinger Release 2019. (2019b). QikProp. Schrödinger LLC.
  • Shan, Y., Kim, E. T., Eastwood, M. P., Dror, R. O., Seeliger, M. A., & Shaw, D. E. (2011). How does a drug molecule find its target binding site? Journal of the American Chemical Society, 133(24), 9181–9183. https://doi.org/10.1021/ja202726y
  • Toledo Warshaviak, D., Golan, G., Borrelli, K. W., Zhu, K., & Kalid, O. (2014). Structure-based virtual screening approach for discovery of covalently bound ligands. Journal of Chemical Information and Modeling, 54 (7), 1941–1950. https://doi.org/10.1021/ci500175r
  • Van Wart, H. E., & Birkedal-Hansen, H. (1990). The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences of the United States of America, 87 (14), 5578–5582. https://doi.org/10.1073/pnas.87.14.5578
  • Westbrook, J. D., Shao, C., Feng, Z., Zhuravleva, M., Velankar, S., & Young, J. (2015). The chemical component dictionary: Complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics (Oxford, England), 31 (8), 1274–1278. https://doi.org/10.1093/bioinformatics/btu789
  • Wilson, C. L., & Matrisian, L. M. (1996). Matrilysin: An epithelial matrix metalloproteinase with potentially novel functions. The International Journal of Biochemistry & Cell Biology, 28(2), 123–136. https://doi.org/10.1016/1357-2725(95)00121-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.