297
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico study on spice-derived antiviral phytochemicals against SARS-CoV-2 TMPRSS2 target

ORCID Icon, ORCID Icon &
Pages 11874-11884 | Received 21 Aug 2020, Accepted 03 Aug 2021, Published online: 24 Aug 2021

References

  • Alburn, H. E., & Greenspan, G. (1972). Thymol as an anti-influenza agent: Google Patents (U.S. Patent No. 3,632,782). U.S. Patent and Trademark Office. https://pdfpiw.uspto.gov/.piw?Docid=03632782&homeurl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526p%3D1%2526u%3D%2Fnetahtml%2FPTO%2Fsrchnum.html%2526r%3D1%2526f%3DG%2526l%3D50%2526d%3DPALL%2526s1%3D3632782.PN.%2526OS%3D%2526RS%3D&PageNum=&Rtype=&SectionNum=&idkey=NONE&Input=View+first+page
  • Altis, A., Otten, M., Nguyen, P. H., Hegger, R., & Stock, G. (2008). Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. The Journal of Chemical Physics, 128(24), 245102. https://doi.org/10.1063/1.2945165
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Anggakusuma, Colpitts, C. C., Schang, L. M., Rachmawati, H., Frentzen, A., Pfaender, S., … Steinmann, E. (2014). Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut, 63(7), 1137–1149. https://doi.org/10.1136/gutjnl-2012-304299
  • Astani, A., Reichling, J., & Schnitzler, P. (2010). Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research, 24(5), 673–679. https://doi.org/10.1002/ptr.2955
  • Astani, A., Reichling, J., & Schnitzler, P. (2011). Screening for antiviral activities of isolated compounds from essential oils. Evidence-Based Complementary and Alternative Medicine: eCAM, 2011, 253643. https://doi.org/10.1093/ecam/nep187
  • Astani, A., & Schnitzler, P. (2014). Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iranian Journal of Microbiology, 6(3), 149–155.
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145(1), 146–151. https://doi.org/10.1016/j.jep.2012.10.043
  • Chen, T.-Y., Chen, D.-Y., Wen, H.-W., Ou, J.-L., Chiou, S.-S., Chen, J.-M., Wong, M.-L., & Hsu, W.-L. (2013). Inhibition of enveloped viruses infectivity by curcumin. PLoS One, 8(5), e62482. https://doi.org/10.1371/journal.pone.0062482
  • Chongtham, A., & Agrawal, N. (2016). Curcumin modulates cell death and is protective in Huntington's disease model. Scientific Reports, 6, 18736. https://doi.org/10.1038/srep18736
  • Consortium, U. (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43(D1), D204–D212.
  • Costanzo, M., De Giglio, M., & Roviello, G. (2020). SARS CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Current Medicinal Chemistry, 27(27), 4536–4541.
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11
  • Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A. M., Berger, A., Burguière, A.-M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.-C., Müller, S., … Doerr, H. W. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 348(20), 1967–1976. https://doi.org/10.1056/NEJMoa030747
  • Forni, D., Cagliani, R., Clerici, M., & Sironi, M. (2017). Molecular evolution of human coronavirus genomes. Trends in Microbiology, 25(1), 35–48. https://doi.org/10.1016/j.tim.2016.09.001
  • Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Tsegaye, T. S., He, Y., Gnirss, K., Niemeyer, D., Schneider, H., Drosten, C., & Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122–4134. https://doi.org/10.1128/JVI.02232-10
  • Goodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of AutoDock. Journal of Molecular Recognition, 9(1), 1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., … Nitsche, A. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.
  • Hou, Y. J., Okuda, K., Edwards, C. E., Martinez, D. R., Asakura, T., Dinnon, K. H., III, … Mascenik, T. M. J. C. (2020). SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 182(2), 429-446.
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. Lancet (London, England), 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Imanishi, N., Andoh, T., Mantani, N., Sakai, S., Terasawa, K., Shimada, Y., Sato, M., Katada, Y., Ueda, K., & Ochiai, H. (2006). Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. The American Journal of Chinese Medicine, 34(1), 157–169. https://doi.org/10.1142/S0192415X06003722
  • Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. Journal of Virology, 93(6), e01815–01818. https://doi.org/10.1128/JVI.01815-18 ]
  • Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P., & Kaushik, S. (2020). Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. VirusDisease, 31, 270–276. https://doi.org/10.1007/s13337-020-00584-0
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Knight, V., Noall, M. W., Moore, R., & Chan, E. (1977). Thymol suppression of protein synthesis in influenza virus-infected and uninfected chick embryo fibroblast cells. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 155(1), 128–136. https://doi.org/10.3181/00379727-155-39759
  • Laskowski, R., MacArthur, M., & Thornton, J. (2006). PROCHECK: Validation of protein-structure coordinates. International Tables for Crystallography, F(25.2.6), 722–725.
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Maisuradze, G. G., & Leitner, D. M. (2007). Free energy landscape of a biomolecule in dihedral principal component space: Sampling convergence and correspondence between structures and minima. Proteins, 67(3), 569–578. https://doi.org/10.1002/prot.21344
  • Mani, J. S., Johnson, J. B., Steel, J. C., Broszczak, D. A., Neilsen, P. M., Walsh, K. B., & Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research, 284, 197989. https://doi.org/10.1016/j.virusres.2020.197989
  • Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Tsetegho Sokeng, A. J., … Nabavi, S. M. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials,10(8), 947. https://doi.org/10.3390/ma10080947
  • Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T., & Takeda, M. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 7001–7003. https://doi.org/10.1073/pnas.2002589117
  • Miszkiel, A., Wojciechowski, M., & Milewski, S. (2011). Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc. Journal of Molecular Modeling, 17(12), 3103–3115. https://doi.org/10.1007/s00894-011-1003-x
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Mou, H., Raj, V. S., van Kuppeveld, F. J., Rottier, P. J., Haagmans, B. L., & Bosch, B. J. (2013). The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. Journal of Virology, 87(16), 9379–9383. https://doi.org/10.1128/JVI.01277-13
  • Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148–157. https://doi.org/10.1016/j.antiviral.2017.03.014
  • Orhan, I. E., & Senol Deniz, F. S. (2020). Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Natural Products and Bioprospecting, 10(4), 171-186. https://doi.org/10.1007/s13659-020-00250-4
  • Paoloni-Giacobino, A., Chen, H., Peitsch, M. C., Rossier, C., & Antonarakis, S. E. (1997). Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics, 44(3), 309–320. https://doi.org/10.1006/geno.1997.4845
  • Prasad, A., Muthamilarasan, M., & Prasad, M. (2020). Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Reports, 39(9), 1109-1114. https://doi.org/10.1007/s00299-020-02560-w
  • Rajagopal, K., Byran, G., Jupudi, S., Vadivelan, R. J., & Sciences, A. (2020). Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. International Journal of Health & Allied Sciences, 9(5), 43–50.
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. https://doi.org/10.1016/S0022-2836(63)80023-6
  • Rathinavel, T., Palanisamy, M., Palanisamy, S., Subramanian, A., & Thangaswamy, S. (2020). Phytochemical 6-gingerol–A promising drug of choice for COVID-19. International Journal of Advanced Science and Engineering, 6(4), 1482–1489.
  • Saleem, U., Riaz, S., Ahmad, B., & Saleem, M. (2017). Pharmacological screening of Trachyspermum ammi for antihyperlipidemic activity in Triton X-100 induced hyperlipidemia rat model. Pharmacognosy Research, 9(Suppl 1), S34–S40. https://doi.org/10.4103/pr.pr_37_17
  • Sanchez, C., Aznar, R., & Sanchez, G. (2015). The effect of carvacrol on enteric viruses. International Journal of Food Microbiology, 192, 72–76. https://doi.org/10.1016/j.ijfoodmicro.2014.09.028
  • Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Schyman, P., Liu, R., Desai, V., & Wallqvist, A. (2017). vNN Web server for ADMET predictions. Frontiers in Pharmacology, 8, 889. https://doi.org/10.3389/fphar.2017.00889
  • Sharifi-Rad, J., Salehi, B., Schnitzler, P., Ayatollahi, S. A., Kobarfard, F., Fathi, M., Eisazadeh, M., & Sharifi-Rad, M. (2017). Susceptibility of Herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cellular and molecular biology (Noisy-le-grand), 63(8), 42–47. https://doi.org/10.14715/cmb/2017.63.8.10
  • Singh, S. (2007). From exotic spice to modern drug? Cell, 130(5), 765–768. https://doi.org/10.1016/j.cell.2007.08.024
  • Spraggon, G., Hornsby, M., Shipway, A., Tully, D. C., Bursulaya, B., Danahay, H., Harris, J. L., & Lesley, S. A. (2009). Active site conformational changes of prostasin provide a new mechanism of proteaseregulation by divalent cations. Protein Science: A Publication of the Protein Society, 18(5), 1081–1094. https://doi.org/10.1002/pro.118
  • Ting, D., Dong, N., Fang, L., Lu, J., Bi, J., Xiao, S., & Han, H. J. (2018). Multisite inhibitors for enteric coronavirus: Antiviral cationic carbon dots based on curcumin. ACS Applied Nano Materials, 1(10), 5451–5459. https://doi.org/10.1021/acsanm.8b00779
  • Umar, S., Shah, M. A. A., Munir, M. T., Yaqoob, M., Fiaz, M., Anjum, S., Kaboudi, K., Bouzouaia, M., Younus, M., Nisa, Q., Iqbal, M., & Umar, W. (2016). RETRACTED: Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys. Poultry Science, 95(7), 1513–1520. https://doi.org/10.3382/ps/pew069
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vasanthi, H. R., & Parameswari, R. P. (2010). Indian spices for healthy heart - An overview. Current Cardiology Reviews, 6(4), 274–279. https://doi.org/10.2174/157340310793566172
  • WHO. (2020). Coronavirus disease (COVID-2019) situation reports - 162 (Report No. 162). World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  • Wu, Q. F., Wang, W., Dai, X. Y., Wang, Z. Y., Shen, Z. H., Ying, H. Z., & Yu, C. H. (2012). Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. Journal of Ethnopharmacology, 139(2), 668–671. https://doi.org/10.1016/j.jep.2011.11.056
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., & Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 367(19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.