290
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The role of Colchicine on actin polymerization dynamics: as a potent anti-angiogenic factor

, , , , & ORCID Icon
Pages 11729-11743 | Received 19 Feb 2021, Accepted 26 Jul 2021, Published online: 23 Aug 2021

References

  • Abdolmaleki, Z., Arab, H.-A., Amanpour, S., & Muhammadnejad, S. (2016). Anti-angiogenic effects of ethanolic extract of Artemisia sieberi compared to its active substance, artemisinin. Revista Brasileira de Farmacognosia, 26(3), 326–333. https://doi.org/10.1016/j.bjp.2015.11.008
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Arjonen, A., Kaukonen, R., & Ivaska, J. (2011). Filopodia and adhesion in cancer cell motility. Cell Adhesion & Migration, 5(5), 421–430. https://doi.org/10.4161/cam.5.5.17723
  • Barron, G. A., Goua, M., Wahle, K. W. J., & Bermano, G. (2017). Circulating levels of angiogenesis-related growth factors in breast cancer: A study to profile proteins responsible for tubule formation. Oncology Reports, 38(3), 1886–1894. https://doi.org/10.3892/or.2017.5803
  • Bayless, K. J., & Johnson, G. A. (2011). Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. Journal of Vascular Research, 48(5), 369–385. https://doi.org/10.1159/000324751
  • Bielenberg, D. R., & Zetter, B. R. (2015). The contribution of angiogenesis to the process of metastasis. Cancer Journal, 21(4), 267–273. https://doi.org/10.1097/PPO.0000000000000138
  • Blackadar, C. B. (2016). Historical review of the causes of cancer. World Journal of Clinical Oncology, 7(1), 54–86. https://doi.org/10.5306/wjco.v7.i1.54
  • Borana, M. S., Mishra, P., Pissurlenkar, R. R. S., Hosur, R. V., & Ahmad, B. (2014). Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. Biochimica et Biophysica Acta, 1844(3), 670–680. https://doi.org/10.1016/j.bbapap.2014.01.009
  • Carlsson, L., & Blikstad, I. (1981). Colchicine treatment of HeLa cells alters the G/F actin ratio. FEBS Letters, 124(2), 282–284. https://doi.org/10.1016/0014-5793(81)80156-1
  • Chamani, J. (2010). Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. Journal of Molecular Structure, 979(1-3), 227–234. https://doi.org/10.1016/j.molstruc.2010.06.035
  • Chen, Y., Gou, X., Ke, X., Cui, H., & Chen, Z. (2012). Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I. PLoS One, 7(7), e40965. https://doi.org/10.1371/journal.pone.0040965
  • Dalbeth, N., Lauterio, T. J., & Wolfe, H. R. (2014). Mechanism of action of colchicine in the treatment of gout. Clinical Therapeutics, 36(10), 1465–1479. https://doi.org/10.1016/j.clinthera.2014.07.017
  • Daly, M. E., Makris, A., Reed, M., & Lewis, C. E. (2003). Hemostatic regulators of tumor angiogenesis: A source of antiangiogenic agents for cancer treatment? Journal of the National Cancer Institute, 95(22), 1660–1673. https://doi.org/10.1093/jnci/djg101
  • Debreczeni, J. É., & Emsley, P. (2012). Handling ligands with Coot. Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 4), 425–430. https://doi.org/10.1107/S0907444912000200
  • Dehghani Sani, F., Shakibapour, N., Beigoli, S., Sadeghian, H., Hosainzadeh, M., & Chamani, J. (2018). Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. Journal of Luminescence, 203, 599–608. https://doi.org/10.1016/j.jlumin.2018.06.083
  • Döme, B., Hendrix, M. J. C., Paku, S., Tóvári, J., & Tímár, J. (2007). Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. The American Journal of Pathology, 170(1), 1–15. https://doi.org/10.2353/ajpath.2007.060302
  • El Baba, N., Farran, M., Khalil, E. A., Jaafar, L., Fakhoury, I., & El-Sibai, M. (2020). The role of Rho GTPases in VEGF signaling in cancer cells. Analytical Cellular Pathology, 2020, 2097214. https://doi.org/10.1155/2020/2097214
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography, 66(Pt 4), 486–501. https://doi.org/10.1107/S0907444910007493
  • Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., & Eser, S., M. C. (2012). Cancer incidence and mortality worldwide: IARC CancerBase No. 11 Lyon, France. International Agency for Research on Cancer, GLOBOCAN, 136(5), E359–E386.
  • Giordano, G., Febbraro, A., Venditti, M., Campidoglio, S., Olivieri, N., Raieta, K., Parcesepe, P., Imbriani, G. C., Remo, A., & Pancione, M. (2014). Targeting angiogenesis and tumor microenvironment in metastatic colorectal cancer: Role of aflibercept. Gastroenterology Research and Practice, 2014, 526178. https://doi.org/10.1155/2014/526178
  • Gourlay, C. W., Carpp, L. N., Timpson, P., Winder, S. J., & Ayscough, K. R. (2004). A role for the actin cytoskeleton in cell death and aging in yeast. The Journal of cell biology, 164(6), 803–809. https://doi.org/10.1083/jcb.200310148
  • Haasdijk, R. A., Tempel, D., BüRgisser, P., van de Kamp, E. H. M., Blonden, L. A. J., Cheng, C., & Duckers, H. J. (2014). Klf7 regulates endothelial cell proliferation and differentiation in angiogenesis. In Angiogenesis the genetic regulation of vascular development (pp. 71–88). Erasmus Universiteit Rotterdam.
  • Hardham, A. R., & Gunning, B. E. S. (1980). Some effects of colchicine on microtubules and cell division in roots of Azolla pinnata. Protoplasma, 102(1-2), 31–51. https://doi.org/10.1007/BF01276946
  • Hasbani, G. E., Jawad, A., & Uthman, I. (2019). Update on the management of colchicine resistant Familial Mediterranean Fever (FMF). Orphanet Journal of Rare Diseases, 14, 224.
  • Jászai, J., & Schmidt, M. H. H. (2019). Trends and challenges in tumor anti-angiogenic therapies. Cells, 8(9), 7–11. https://doi.org/10.3390/cells8091102
  • Joo, Y. Y., Jang, J. W., Lee, S. W., Yoo, S. H., Kwon, J. H., Nam, S. W., Bae, S. H., Choi, J. Y., & Yoon, S. K. (2019). Circulating pro- and anti-angiogenic factors in multi-stage liver disease and hepatocellular carcinoma progression. Scientific Reports, 9(1), 9137–9138. https://doi.org/10.1038/s41598-019-45537-w
  • Jung, H. I., Shin, I., Park, Y. M., Kang, K. W., & Ha, K. S. (1997). Colchicine activates actin polymerization by microtubule depolymerization. Molecules and Cells, 7(3), 431–437.
  • Lamalice, L., Le Boeuf, F., & Huot, J. (2007). Endothelial cell migration during angiogenesis. Circulation Research, 100(6), 782–794. https://doi.org/10.1161/01.RES.0000259593.07661.1e
  • Lang, L., Hou, Y., Chen, Y., Tu, G., Tao, J., Yang, D., Xi, L., Fu, L., Sun, K., Yin, J., Chen, R., Peng, M., Liu, S., & Liu, M. (2018). ATM-mediated phosphorylation of cortactin involved in actin polymerization promotes breast cancer cells migration and invasion. Cellular Physiology and Biochemistry, 51(6), 2972–2988. https://doi.org/10.1159/000496048
  • Li, W. W., Li, V. W., Hutnik, M., & Chiou, A. S. (2012). Tumor angiogenesis as a target for dietary cancer prevention. Journal of Oncology, 2012, 879623 https://doi.org/10.1155/2012/879623
  • Liantinioti, G., Argyris, A. A., Protogerou, A. D., & Vlachoyiannopoulos, P. (2018). The role of Colchicine in the treatment of autoinflammatory diseases. Current Pharmaceutical Design, 24(6), 690–694. https://doi.org/10.2174/1381612824666180116095658
  • Liotta, L. A., & Stetler-Stevenson, W. G. (1991). Tumor invasion and metastasis: An imbalance of positive and negative regulation. Cancer Research, 51(18 SUPPL), 327–336.
  • Little RE, S. C. (2009). The New England Journal of Medicine Downloaded from nejm.org at CARLETON UNIVERSITY on March 3, 2016. For Personal Use Only. No Other Uses without Permission. From the NEJM Archive. Copyright © 2009 Massachusetts Medical Society. All Rights Reserved.
  • Liu, H., Pierre-Pierre, N., & Huo, Q. (2012). Dynamic light scattering for gold nanorod size characterization and study of nanorod-protein interactions. Gold Bulletin, 45(4), 187–195. https://doi.org/10.1007/s13404-012-0067-4
  • Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77(9), 1745–1770. https://doi.org/10.1007/s00018-019-03351-7
  • Ma, X., & Yu, H. (2006). Global burden of cancer. Yale Journal of Biology and Medicine, 79(3–4), 85–94.
  • Mahadevan, V., & Hart, I. R. (1990). Metastasis and angiogenesis. Acta Oncologica, 29(1), 97–103. https://doi.org/10.3109/02841869009089997
  • McLoughlin, E. C., & O’Boyle, N. M. (2020). Correction: Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals 2020, 13, 8. Pharmaceuticals, 13(4), 1–43. https://doi.org/10.3390/ph13040072
  • Mokaberi, P., Reyhani, V., Amiri-Tehranizadeh, Z., Saberi, M. R., Beigoli, S., Samandar, F., & Chamani, J. (2019). New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: Binary and ternary approaches. New Journal of Chemistry, 43(21), 8132–8145. https://doi.org/10.1039/C9NJ01048C
  • Moosavi-Movahedi, A. A., Chamani, J., Gharanfoli, M., & Hakimelahi, G. H. (2004). Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochimica Acta, 409(2), 137–144. https://doi.org/10.1016/S0040-6031(03)00358-7
  • Nguyen, M. P., Lee, D., Lee, S. H., Lee, H. E., Lee, H. Y., & Lee, Y. M. (2015). Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion. Oncotarget, 6(18), 16588–16600. https://doi.org/10.18632/oncotarget.3752
  • Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2(3), 213–219. https://doi.org/10.2147/vhrm.2006.2.3.213
  • Otterbein, L. R., Graceffa, P., & Dominguez, R. (2001). The crystal structure of uncomplexed actin in the ADP state. Science, 293(5530), 708–711. https://doi.org/10.1126/science.1059700
  • Papakonstanti, E. A., & Stournaras, C. (2008). Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Letters, 582(14), 2120–2127. https://doi.org/10.1016/j.febslet.2008.02.064
  • Pathak, S., Tripathi, S., Deori, N., Ahmad, B., Verma, H., Lokhande, R., Nagotu, S., & Kale, A. (2021). Effect of tetracycline family of antibiotics on actin aggregation, resulting in the formation of Hirano bodies responsible for neuropathological disorders. Journal of Biomolecular Structure & Dynamics, 39 (1), 218–236. https://doi.org/10.1080/07391102.2020.1717629
  • Perez-Iratxeta, C., & Andrade-Navarro, M. A. (2008). K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Structural Biology, 8, 25–25. https://doi.org/10.1186/1472-6807-8-25
  • Pezzella, F. (2019). Pharmacogenetics implementation in the clinics: Information and guidelines for germline variants. Cancer Drug Resistance, 2, 595–607. https://doi.org/10.20517/cdr.2019.39
  • Prager, G. W., Poettler, M., Unseld, M., & Zielinski, C. C. (2012). Angiogenesis in cancer: Anti-VEGF escape mechanisms. Translational Lung Cancer Research, 1(1), 14–25. https://doi.org/10.3978/j.issn.2218-6751.2011.11.02
  • Pralhad, T., Madhusudan, S., & Rajendrakumar, K. (2003). Concept, mechanisms and therapeutics of angiogenesis in cancer and other diseases. The Journal of Pharmacy and Pharmacology, 55(8), 1045–1053. https://doi.org/10.1211/0022357021819
  • Racherla, R., Mudhigeti, N., Kalawat, U., & Mohan, A. (2019). Trends of acute – Phase dengue at a tertiary care hospital, Tirupati, Andhra Pradesh India. The Journal of Clinical and Scientific Research, 7(4), 175. https://doi.org/10.4103/JCSR.JCSR
  • Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2), 34. https://doi.org/10.3390/biomedicines5020034
  • Rodríguez-Caso, L., Reyes-Palomares, A., Sánchez-Jiménez, F., Quesada, A. R., & Medina, M. Á. (2012). What is known on angiogenesis-related rare diseases? A systematic review of literature. Journal of Cellular and Molecular Medicine, 16(12), 2872–2893. https://doi.org/10.1111/j.1582-4934.2012.01616.x
  • Saaristo, A., Karpanen, T., & Alitalo, K. (2000). Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene, 19(53), 6122–6129. https://doi.org/10.1038/sj.onc.1203969
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
  • Schnittler, H., Taha, M., Schnittler, M. O., Taha, A. A., Lindemann, N., & Seebach, J. (2014). Actin filament dynamics and endothelial cell junctions: The Ying and Yang between stabilization and motion. Cell and Tissue Research, 355(3), 529–543. https://doi.org/10.1007/s00441-014-1856-2
  • Sharifi-Rad, M., Berkay Yılmaz, Y., Antika, G., Salehi, B., Tumer, T. B., Kulandaisamy Venil, C., Das, G., Patra, J. K., Karazhan, N., Akram, M., Iqbal, M., Imran, M., Sen, S., Acharya, K., Dey, A., & Sharifi-Rad, J. (2021). Phytochemical constituents, biological activities, and healthpromoting effects of the genus Origanum. Phytotherapy research : PTR, 35(1), 95–121. https://doi.org/10.1002/ptr.6785
  • Skoufias, D. A., & Wilson, L. (1992). Mechanism of inhibition of microtubule polymerization by colchicine: Inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry, 31(3), 738–746. https://doi.org/10.1021/bi00118a015
  • Sohrabi, T., Hosseinzadeh, M., Beigoli, S., Saberi, M. R., & Chamani, J. (2018). Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. Journal of Molecular Liquids, 256, 127–138. https://doi.org/10.1016/j.molliq.2018.02.031
  • Solomon, E. I., Augustine, A. J., & Yoon, J. (2010). Rapid and efficient purification of actin from nonmuscle sources. Cell Motility and the Cytoskeleton, 39(30), 3921–3932. https://doi.org/10.1039/b800799c.O
  • Sonavane, S., Haider, S. Z., Kumar, A., & Ahmad, B. (2017). Hemin is able to disaggregate lysozyme amyloid fibrils into monomers. Biochimica et Biophysica Acta. Proteins and Proteomics, 1865(11 Pt A), 1315–1325. https://doi.org/10.1016/j.bbapap.2017.07.017
  • Stevenson, R. P., Veltman, D., & Machesky, L. M. (2012). Actin-bundling proteins in cancer progression at a glance. Journal of Cell Science, 125(Pt 5), 1073–1079. https://doi.org/10.1242/jcs.093799
  • Sun, B., Fang, Y., Li, Z., Chen, Z., & Xiang, J. (2015). Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomedical Reports, 3(5), 603–610. https://doi.org/10.3892/br.2015.494
  • Sund, M., & Kalluri, R. (2008). Endogenous inhibitors of angiogenesis. Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy, 10, 215–231. https://doi.org/10.1007/978-3-540-33177-3_12
  • Tolentino, L. K. S., Justine Enrico, E. G., Listanco, R. L. M., Anthony Ramirez, M. M., Renon, T. L. U., & Rikko Samson, M. B. (2019). Development of fertile egg detection and incubation system using image processing and automatic candling [Paper presentation]. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2018-October (April), 701–706. https://doi.org/10.1109/TENCON.2018.8650320
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31, 455–461. http://doi.org/10.1002/jcc.21334
  • Vandecandelaere, A., Martin, S. R., & Engelborghs, Y. (1997). Response of microtubules to the addition of colchicine and tubulin-colchicine: Evaluation of models for the interaction of drugs with microtubules. The Biochemical Journal, 323(1), 189–196. https://doi.org/10.1042/bj3230189
  • Wang, D., Xie, Y., Yan, M., Pan, Q., Liang, Y., & Sun, X. (2019). Colchicine causes prenatal cell toxicity and increases tetraploid risk. BMC Pharmacology & Toxicology, 20(1), 66–68. https://doi.org/10.1186/s40360-019-0365-z
  • Wang, Z., Dabrosin, C., Yin, X., Fuster, M. M., Arreola, A., Rathmell, W. K., Generali, D., Nagaraju, G. P., El-Rayes, B., Ribatti, D., Chen, Y. C., Honoki, K., Fujii, H., Georgakilas, A. G., Nowsheen, S., Amedei, A., Niccolai, E., Amin, A., Ashraf, S. S., … Jensen, L. D. (2015). Broad targeting of angiogenesis for cancer prevention and therapy. Seminars in Cancer Biology, 35 Suppl, S224–S243. https://doi.org/10.1016/j.semcancer.2015.01.001
  • Wiedemann, C., Bellstedt, P., & Görlach, M. (2013). CAPITO-a web server-based analysis and plotting tool for circular dichroism data . Bioinformatics, 29(14), 1750–1757. https://doi.org/10.1093/bioinformatics/btt278
  • Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science, 96(7), 379–386. https://doi.org/10.1111/j.1349-7006.2005.00062.x
  • Zuazo-Gaztelu, I., & Casanovas, O. (2018). Unraveling the role of angiogenesis in cancer ecosystems. Frontiers in Oncology, 8(JUL), 213–248. https://doi.org/10.3389/fonc.2018.00248

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.