1,355
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Covid-19 rapid test by combining a Random Forest-based web system and blood tests

ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 11948-11967 | Received 15 Feb 2021, Accepted 05 Aug 2021, Published online: 31 Aug 2021

References

  • Abdar, M., Yen, N. Y., & Hung, J. C.-S. (2018). Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees. Journal of Medical and Biological Engineering, 38(6), 953–965. https://doi.org/10.1007/s40846-017-0360-z
  • Andrade, M. K., de Santana, M. A., Moreno, G., Oliveira, I., Santos, J., Rodrigues, M. C. A., & dos Santos, W. P. (2020). An EEG brain-computer interface to classify motor imagery signals. In Biomedical signal processing (pp. 83–98). Springer.
  • Barakat, N., Bradley, A. P., & Barakat, M. N. H. (2010). Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Transactions on Information Technology in Biomedicine, 14(4), 1114–1120. https://doi.org/10.1109/TITB.2009.2039485
  • Barbosa, V. A. d. F., Gomes, J. C., de Santana, M. A., de Almeida Albuquerque, J. E., de Souza, R. G., de Souza, R. E., & dos Santos, W. P. (2020). Heg.IA: An intelligent system to support diagnosis of Covid-19 based on blood tests. medRxiv.
  • Barbosa, V. A. F., Santana, M. A., Andrade, M. K. S., Lima, R. C. F., & Santos, W. P. (2020). Deep-wavelet neural networks for breast cancer early diagnosis using mammary termographies. In H. Das, C. Pradhan, & N. Dey (Eds.), Deep learning for data analytics: Foundations, biomedical applications, and challenges (1st ed.). Academic Press.
  • Borges, L. (2016). Medidas de acurácia diagnóstica na pesquisa cardiovascular. International Journal of Cardiovascular Sciences, 29(3), 218–222.
  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. https://doi.org/10.1145/130385.130401
  • Bouckaert, R. R. (2008). Bayesian network classifiers in weka for version 3-5-7. Artificial Intelligence Tools, 11(3), 369–387.
  • Brazilian Ministry of Health. (2020). Guidelines for the diagnosis and treatment of COVID19 [Computer software manual]. Retrieved June 03, 2020, from www.sbac.org.br/blog/2020/04/09/diretrizes-para-diagnostico-e-tratamento-da-covid-19/
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cheng, J., & Greiner, R. (1999). Comparing Bayesian network classifiers. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 101–108.
  • Cheng, J., & Greiner, R. (2001). Learning Bayesian belief network classifiers: Algorithms and System. Advances in Artificial Intelligence, 2056(1), 141–151.
  • Çomak, E., Arslan, A., & Türkoğlu, İ. (2007). A decision support system based on support vector machines for diagnosis of the heart valve diseases. Computers in Biology and Medicine, 37(1), 21–27. https://doi.org/10.1016/j.compbiomed.2005.11.002
  • Commowick, O., Istace, A., Kain, M., Laurent, B., Leray, F., Simon, M., Pop, S. C., Girard, P., Améli, R., Ferré, J.-C., Kerbrat, A., Tourdias, T., Cervenansky, F., Glatard, T., Beaumont, J., Doyle, S., Forbes, F., Knight, J., Khademi, A., Mahbod, A., … Barillot, C. (2018). Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Scientific Reports, 8(1), 13650. https://doi.org/10.1038/s41598-018-31911-7
  • Cordeiro, F. R., Santos, W. P., & Silva-Filho, A. G. (2016). A semi-supervised fuzzy growcut algorithm to segment and classify regions of interest of mammographic images. Expert Systems with Applications, 65, 116–126. https://doi.org/10.1016/j.eswa.2016.08.016
  • Cordeiro, F. R., Santos, W. P., & Silva-Filho, A. G. (2017). Analysis of supervised and semisupervised growcut applied to segmentation of masses in mammography images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 5(4), 297–315.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Cruz, T., Cruz, T., & Santos, W. (2018). Detection and classification of lesions in mammographies using neural networks and morphological wavelets. IEEE Latin America Transactions, 16(3), 926–932. https://doi.org/10.1109/TLA.2018.8358675
  • de Lima, S. M., da Silva-Filho, A. G., & dos Santos, W. P. (2014). A methodology for classification of lesions in mammographies using Zernike Moments, ELM and SVM Neural Networks in a multikernel approach. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 988–991.
  • de Lima, S. M., da Silva-Filho, A. G., & dos Santos, W. P. (2016). Detection and classification of masses in mammographic images in a multi-kernel approach. Computer Methods and Programs in Biomedicine, 134, 11–29. https://doi.org/10.1016/j.cmpb.2016.04.029
  • de Vasconcelos, J., dos Santos, W., & de Lima, R. (2018). Analysis of methods of classification of breast thermographic images to determine their viability in the early breast cancer detection. IEEE Latin America Transactions, 16(6), 1631–1637. https://doi.org/10.1109/TLA.2018.8444159
  • Döhla, M., Boesecke, C., Schulte, B., Diegmann, C., Sib, E., Richter, E., Eschbach-Bludau, M., Aldabbagh, S., Marx, B., Eis-Hübinger, A.-M., Schmithausen, R. M., & Streeck, H. (2020). Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health, 182, 170–172. https://doi.org/10.1016/j.puhe.2020.04.009
  • Fan, B. E., Chong, V. C. L., Chan, S. S. W., Lim, G. H., Lim, K. G. E., Tan, G. B., Mucheli, S. S., Kuperan, P., & Ong, K. H. (2020). Hematologic parameters in patients with COVID-19 infection. American Journal of Hematology, 95(6), E131–E134. https://doi.org/10.1002/ajh.25774
  • FAPESP. (2020). FAPESP COVID-19 data sharing/BR. https://repositoriodatasharingfapesp.uspdigital.usp.br
  • Gao, Y., Li, T., Han, M., Li, X., Wu, D., Xu, Y., Zhu, Y., Liu, Y., Wang, X., & Wang, L. (2020). Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. Journal of Medical Virology, 92(7), 791–796. https://doi.org/10.1002/jmv.25770
  • Gardner, M. W., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0
  • Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1
  • Gomes, J. C., Barbosa, V. A. d. F., Santana, M. A. d., Bandeira, J., Valença, M. J. S., Souza, R. E. d., Ricardo Emmanuel, Ismael, A. M., & Santos, W. P. d. (2020a). IKONOS: An intelligent tool to support diagnosis of Covid-19 by texture analysis of x-ray images. Research on Biomedical Engineering, s42600-020-00091-7.
  • Gomes, J. C., Barbosa, V. A., Ribeiro, D. E., de Souza, R. E., & dos Santos, W. P. (2020b). Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines. Research on Biomedical Engineering, 36(4), 399–410. https://doi.org/10.1007/s42600-020-00079-3
  • Gomes, J. C., Silva, L. H. d. S., Ferreira, J., F. Junior, A. A., Rocha, A. L. d. S., Castro, L., Silva, N. R., Fernandes, B., & dos Santos, W. P. (2020c). Optimizing the molecular diagnosis of Covid-19 by combining RT-PCR and a pseudo-convolutional machine learning approach to characterize virus DNA sequences.  Scientific Reports, 11(1), 1-28.  
  • Gunčar, G., Kukar, M., Notar, M., Brvar, M., Černelč, P., Notar, M., & Notar, M. (2018). An application of machine learning to haematological diagnosis. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-017-18564-8
  • Guo, L., Ren, L., Yang, S., Xiao, M., Chang, D., Yang, F., Dela Cruz, C. S., Wang, Y., Wu, C., Xiao, Y., Zhang, L., Han, L., Dang, S., Xu, Y., Yang, Q.-W., Xu, S.-Y., Zhu, H.-D., Xu, Y.-C., Jin, Q., … Wang, J. (2020). Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical Infectious Diseases, 71 (15), 778–785. https://doi.org/10.1093/cid/ciaa310
  • Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the roc curve. Machine Learning, 77(1), 103–123. https://doi.org/10.1007/s10994-009-5119-5
  • Hasan, T. T., Jasim, M. H., & Hashim, I. A. (2017). Heart disease diagnosis system based on multilayer perceptron neural network and support vector machine. International Journal of Current Engineering and Technology, 77(55), 2277–4106.
  • Haykin, S. (2001). Neural networks: Principles and practice. Bookman, 11, 900.
  • Hoffman, T., Nissen, K., Krambrich, J., Rönnberg, B., Akaberi, D., Esmaeilzadeh, M., Salaneck, E., Lindahl, J., & Lundkvist, Å. (2020). Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to sars-cov-2. Infection Ecology & Epidemiology, 10(1), 1754538. https://doi.org/10.1080/20008686.2020.1754538
  • Jambukia, S. H., Dabhi, V. K., & Prajapati, H. B. (2015). Classification of ECG signals using machine learning techniques: A survey. 2015 International Conference on Advances in Computer Engineering and Applications, pp. 714–721.
  • Kaggle. (2020). Diagnosis of COVID-19 and its clinical spectrum [Computer software manual]. Retrieved April 07, 2020, from www.kaggle.com/einsteindata4u/covid19
  • Karlik, B. (2014). Machine learning algorithms for characterization of EMG signals. International Journal of Information and Electronics Engineering, 4(3), 189.
  • Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261–283. https://doi.org/10.1007/s10462-011-9272-4
  • Lerner, B., Levinstein, M., Rosenberg, B., Guterman, H., Dinstein, L., & Romem, Y. (1994). Feature selection and chromosome classification using a multilayer perceptron neural network. Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), Vol. 6, pp. 3540–3545.
  • Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., Sun, R., Wang, Y., Hu, B., Chen, W., Zhang, Y., Wang, J., Huang, B., Lin, Y., Yang, J., Cai, W., Wang, X., Cheng, J., Chen, Z., Sun, K., … Ye, F. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for sars-cov-2 infection diagnosis. Journal of Medical Virology, 92(9), 1518–1524. https://doi.org/10.1002/jmv.25727
  • Lima, S., Azevedo, W., Cordeiro, F., Silva-Filho, A., & Santos, W. (2015). Feature extraction employing fuzzy-morphological decomposition for detection and classification of mass on mammograms. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2015, pp. 801–804.
  • Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., Guo, C., Tian, J., Luo, J., Yao, J., Pang, R., Shen, H., Peng, C., Liu, T., Zhang, Q., … Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 55, 102763. https://doi.org/10.1016/j.ebiom.2020.102763
  • Liu, Y., Liu, Y., Diao, B., Ren, F., Wang, Y., Ding, J., & Huang, Q. (2020). Diagnostic indexes of a rapid IgG/IgM combined antibody test for sars-cov-2. medRxiv, 2020.
  • Luo, Y., Szolovits, P., Dighe, A. S., & Baron, J. M. (2016). Using machine learning to predict laboratory test results. American Journal of Clinical Pathology, 145(6), 778–788. https://doi.org/10.1093/ajcp/aqw064
  • Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. Journal of Neuroscience Methods, 167(1), 82–90. https://doi.org/10.1016/j.jneumeth.2007.09.022
  • Naraei, P., Abhari, A., & Sadeghian, A. (2016). Application of multilayer perceptron neural networks and support vector machines in classification of healthcare data. 2016 Future Technologies Conference (FTC), pp. 848–852. https://doi.org/10.1109/FTC.2016.7821702
  • Pereira, J. M. S., Santana, M. A., Lima, R. C. F., & Santos, W. P. (2020a). Lesion detection in breast thermography using machine learning algorithms without previous segmentation. In W. P. dos Santos, M. A. de Santana, & W. W. A. da Silva (Eds.), Understanding a cancer diagnosis (1st ed., pp. 81–94). Nova Science.
  • Pereira, J. M. S., Santana, M. A., Lima, R. C. F., Lima, S. M. L., & Santos, W. P. (2020b). Method for classification of breast lesions in thermographic images using elm classifiers. In W. P. dos Santos, M. A. de Santana, & W. W. A. da Silva (Eds.), Understanding a cancer diagnosis (1st ed., pp. 117–132). Nova Science.
  • Pereira, J. M. S., Santana, M. A., Silva, W. W. A., Lima, R. C. F., Lima, S. M. L., & Santos, W. P. (2020c). Dialectical optimization method as a feature selection tool for breast cancer diagnosis using thermographic images. In W. P. dos Santos, M. A. de Santana, & W. W. A. da Silva (Eds.), Understanding a cancer diagnosis (1st ed., pp. 95–118). Nova Science.
  • Phung, S. L., Bouzerdoum, A., & Chai, D. (2005). Skin segmentation using color pixel classification: Analysis and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1), 148–154. https://doi.org/10.1109/TPAMI.2005.17
  • Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: An overview and their use in medicine. Journal of Medical Systems, 26(5), 445–463. https://doi.org/10.1023/A:1016409317640
  • Raghu, S., & Sriraam, N. (2017). Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures. Expert Systems with Applications, 89, 205–221. https://doi.org/10.1016/j.eswa.2017.07.029
  • Rodrigues, A. L., de Santana, M. A., Azevedo, W. W., Bezerra, R. S., Barbosa, V. A., de Lima, R. C., & dos Santos, W. P. (2019). Identification of mammary lesions in thermographic images: Feature selection study using genetic algorithms and particle swarm optimization. Research on Biomedical Engineering, 35(3–4), 213–222. https://doi.org/10.1007/s42600-019-00024-z
  • Santana, M. A. d., Pereira, J. M. S., Silva, F. L. d., Lima, N. M. d., Sousa, F. N. d., Arruda, G. M. S. d., Lima, R. d. C. F. d., Silva, W. W. A. d., & Santos, W. P. d. (2018). Breast cancer diagnosis based on mammary thermography and extreme learning machines. Research on Biomedical Engineering, 34(1), 45–53. https://doi.org/10.1590/2446-4740.05217
  • Santana, M. A., Pereira, J. M. S., Lima, R. C. F., & Santos, W. P. (2020). Breast lesions classification in frontal thermographic images using intelligent systems and moments of Haralick and Zernike. In W. P. dos Santos, M. A. de Santana, & W. W. A. da Silva (Eds.), Understanding a cancer diagnosis (1st ed., pp. 65–80). Nova Science.
  • Silva, W. W. A., Santana, M. A., Silva Filho, A. G., Lima, S. M. L., & Santos, W. P. (2020). Morphological extreme learning machines applied to the detection and classification of mammary lesions. In T. K. Gandhi, S. Bhattacharyya, S. De, D. Konar, & S. Dey (Eds.), Advanced machine vision paradigms for medical image analysis. Elsevier.
  • Soares, F., Villavicencio, A., Fogliatto, F. S., Rigatto, M. H. P., Anzanello, M. J., Idiart, M. A., & Stevenson, M. (2020). A novel specific artificial intelligence-based method to identify COVID-19 cases using simple blood exams. medRxiv, 2020.
  • Sun, T., Wang, J., Li, X., Lv, P., Liu, F., Luo, Y., Gao, Q., Zhu, H., & Guo, X. (2013). Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set. Computer Methods and Programs in Biomedicine, 111(2), 519–524. https://doi.org/10.1016/j.cmpb.2013.04.016
  • Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y.-Q., Wang, Q., & Miao, H. (2020). Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduction and Targeted Therapy, 5(1), 1–3.
  • Tanner, L., Schreiber, M., Low, J. G. H., Ong, A., Tolfvenstam, T., Lai, Y. L., Ng, L. C., Leo, Y. S., Thi Puong, L., Vasudevan, S. G., Simmons, C. P., Hibberd, M. L., & Ooi, E. E. (2008). Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Neglected Tropical Diseases, 2(3), e196. https://doi.org/10.1371/journal.pntd.0000196
  • Turner, A. J., Hiscox, J. A., & Hooper, N. M. (2004). ACE2: From vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences, 25(6), 291–294. https://doi.org/10.1016/j.tips.2004.04.001
  • WHO. (2020). Advice on the use of point-of-care immunodiagnostic tests for COVID-19 [Computer software manual]. Retrieved June 05, 2020, from www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests
  • Yao, J., Dwyer, A., Summers, R. M., & Mollura, D. J. (2011). Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification. Academic Radiology, 18(3), 306–314. https://doi.org/10.1016/j.acra.2010.11.013
  • Zheng, Y.-Y., Ma, Y.-T., Zhang, J.-Y., & Xie, X. (2020). COVID-19 and the cardiovascular system. Nature Reviews. Cardiology, 17(5), 259–260. https://doi.org/10.1038/s41569-020-0360-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.