225
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Thermal shift assays of marine-derived fungal metabolites from Aspergillus fischeri MMERU 23 against Leishmania major pteridine reductase 1 and molecular dynamics studies

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 11968-11976 | Received 17 Feb 2021, Accepted 05 Aug 2021, Published online: 20 Aug 2021

References

  • Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., & Sereno, D. (2016). A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Neglected Tropical Diseases, 10(3), e0004349. https://doi.org/10.1371/journal.pntd.0004349
  • Armúa-Fernández, M. T., & Venzal, J. M. (2019). Leishmaniosis: Breve puesta al día. Veterinaria (Montevideo), 55(211), 29–36. https://doi.org/10.29155/vet.55.211.5
  • Bang, S., Song, J. H., Lee, D., Lee, C., Kim, S., Kang, K. S., Lee, J. H., & Shim, S. H. (2019). Neuroprotective secondary metabolite produced by an endophytic fungus, neosartorya fischeri JS0553, isolated from Glehnia littoralis. Journal of Agricultural and Food Chemistry, 67(7), 1831–1838. https://doi.org/10.1021/acs.jafc.8b05481
  • Braun, G. H., Ramos, H. P., Candido, A. C. B. B., Pedroso, R. C. N., Siqueira, K. A., Soares, M. A., Dias, G. M., Magalhães, L. G., Ambrósio, S. R., Januário, A. H., & Pietro, R. C. L. R. (2021). Evaluation of antileishmanial activity of harzialactone a isolated from the marine-derived fungus Paecilomyces sp . Natural Product Research, 35(10), 1644–1647. https://doi.org/10.1080/14786419.2019.1619725
  • Cavazzuti, A., Paglietti, G., Hunter, W. N., Gamarro, F., Piras, S., Loriga, M., Allecca, S., Corona, P., McLuskey, K., Tulloch, L., Gibellini, F., Ferrari, S., & Costi, M. P. (2008). Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1448–1453. https://doi.org/10.1073/pnas.0704384105
  • Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., Alvar, J., & Boelaert, M. (2007). Visceral Leishmaniasis: What are the needs for diagnosis, treatment and control? Nature Reviews. Microbiology, 5(11), 873–S16. https://doi.org/10.1038/nrmicro1748
  • Cimmperman, P., Baranauskiene, L., Jachimoviciūte, S., Jachno, J., Torresan, J., Michailoviene, V., Matuliene, J., Sereikaite, J., Bumelis, V., & Matulis, D. (2008). A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophysical Journal, 95(7), 3222–3231. https://doi.org/10.1529/biophysj.108.134973
  • Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Dahlin, J. L., Walters, M. A., Scientist, M., & Program, T. (2016). How to triage PAINS-full research. Assay and Drug Development Technologies, 14(3), 168–174. https://doi.org/10.1089/adt.2015.674
  • Díaz, L. O., Bernal, F., & Barrera, E. C. (2013). Diterpenos de Núcleo Kaurano como Inhibidores de la PTR1 de Leishmania: Un Estudio In-Silico. Revista Facultad de Ciencias Básicas, 9(1), 142–153. https://doi.org/10.18359/rfcb.362
  • Eamvijarn, A., Gomes, N. M., Dethoup, T., Buaruang, J., Manoch, L., Silva, A., Pedro, M., Marini, I., Roussis, A., & Kijjoa, A. (2013). Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344) and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron, 69(40), 8583–8591. https://doi.org/10.1016/j.tet.2013.07.078
  • Ejov, M., & Dagne, D. (2014). Strategic framework for Leishmaniasis control in the WHO European Region 2014–2020. https://apps.who.int/iris/handle/10665/329477
  • Fenwick, A. (2012). The global burden of neglected tropical diseases. Public Health, 126(3), 233–236. https://doi.org/10.1016/j.puhe.2011.11.015
  • Figueiredo, K. A., Figueiredo, J. F. S., Costa, R. K. M., Alves, M. M. M., Magalhaes, J. L., Carvalho, A. L. M., & Lima, F. C. A. (2018). Prospecting biochemical targets for in silico study for antileishmania chemotherapy. Revista Virtual DE Quimica, 10(5), 1485–1501. https://doi.org/10.21577/1984-6835.20180099
  • Gao, K., Oerlemans, R., & Groves, M. R. (2020). Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophysical Reviews, 12(1), 85–104. https://doi.org/10.1007/s12551-020-00619-2
  • Gomes, N. G. M. (2014). Isolation, characterization and biological activity evaluation of bioactive compounds from Marine Sponge-Associated Fungi [Doctoral dissertation]. University of Porto, 335.
  • Guglielmo, Z., Rodriguez, N., & Oviedo, H. (2018). Tratamientos para la Leishmaniasis. Revista de la Facultad de Medicina, 41(1), 4–26.
  • Hamiaux, C., Drummond, R. S., Janssen, B. J., Ledger, S. E., Cooney, J. M., Newcomb, R. D., & Snowden, K. C. (2012). DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Current Biology : CB, 22(21), 2032–2036. https://doi.org/10.1016/j.cub.2012.08.007
  • Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  • Huynh, K., & Partch, C. L. (2015). Analysis of Protein Stability and Ligand Interactions by Thermal Shift Assay. Current Protocols in Protein Science, 79, 28.9.1–28.9.14. https://doi.org/10.1002/0471140864.ps2809s
  • HyperChem (TM) Professional 7.5, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA.
  • Jain, A. N. (2007). Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. Journal of Computer-Aided Molecular Design, 21(5), 281–306. https://doi.org/10.1007/s10822-007-9114-2
  • Kaur, J., Sundar, S., & Singh, N. (2010). Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. The Journal of Antimicrobial Chemotherapy, 65(8), 1742–1748. https://doi.org/10.1093/jac/dkq189 20519355
  • Kumar, P., Sundar, S., & Singh, N. (2007). Degradation of pteridine reductase 1 (PTR1) enzyme during growth phase in the protozoan parasite Leishmania donovani. Experimental Parasitology, 116(2), 182–189. https://doi.org/10.1016/j.exppara.2006.12.008
  • Lee, S. Y., Kinoshita, H., Ihara, F., Igarashi, Y., & Nihira, T. (2008). Identification of novel derivative of helvolic acid from Metarhizium anisopliae grown in medium with insect component. Journal of Bioscience and Bioengineering, 105(5), 476–480. https://doi.org/10.1263/jbb.105.476
  • Leite, F. H. A., Froes, T. Q., da Silva, S. G., de Souza, E. I. M., Vital-Fujii, D. G., Trossini, G. H. G., Pita, S. S. d R., & Castilho, M. S. (2017). An integrated approach towards the discovery of novel non-nucleoside Leishmania major pteridine reductase 1 inhibitors. European Journal of Medicinal Chemistry, 132, 322–332. https://doi.org/10.1016/j.ejmech.2017.03.043
  • Leite, F. H. A., Santiago, P. B. G. D. S., Froes, T. Q., da Silva Filho, J., da Silva, S. G., Ximenes, R. M., de Faria, A. R., Brondani, D. J., de Albuquerque, J. F. C., & Castilho, M. S. (2016). Structure-guided discovery of thiazolidine-2,4-dione derivatives as a novel class of Leishmania major pteridine reductase 1 inhibitors. European Journal of Medicinal Chemistry, 123, 639–648. https://doi.org/10.1016/j.ejmech.2016.07.060
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Marvin, version 14.10.6, 2014, ChemAxon. http://www.chemaxon.com.
  • Matulis, D., Kranz, J. K., Salemme, F. R., & Todd, M. J. (2005). Thermodynamic stability of carbonic anhydrase: Measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry, 44(13), 5258–5266. https://doi.org/10.1021/bi048135v
  • Molinski, T. F., Dalisay, D. S., Lievens, S. L., & Saludes, J. P. (2009). Drug development from marine natural products. Nature Reviews. Drug Discovery, 8(1), 69–85. https://doi.org/10.1038/nrd2487
  • Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321–4325. https://doi.org/10.1093/nar/8.19.4321
  • Neri, F. S. M., Júnior, D. B. C., Froes, T. Q., da Silva, P. B. G., do Egito, M. S., Moreira, P. O. L., de Pilla Varotti, F., Castilho, M. S., Teixeira-Neto, R. G., de Albuquerque, J. F. C., & Leite, F. H. A. (2020). Antileishmanial activity evaluation of thiazolidine-2,4-dione against Leishmania infantum and Leishmania braziliensis. Parasitology Research, 119(7), 2263–2274. https://doi.org/10.1007/s00436-020-06706-3
  • Pinheiro, A., Dethoup, T., Bessa, J., Silva, A. M. S., & Kijjoa, A. (2012). A new bicyclic sesquiterpene from the marine sponge associated fungus Emericellopsis minima. Phytochemistry Letters, 5(1), 68–70. https://doi.org/10.1016/j.phytol.2011.10.002
  • Rateb, M. E., & Ebel, R. (2011). Secondary metabolites of fungi from marine habitats. Natural Product Reports, 28(2), 290–344. https://doi.org/10.1039/c0np00061b 21229157
  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  • Shraddha, P., Rakesh, S., & Devender, P. (2020). New benzimidazole derivatives as inhibitors of Pteridine reductase 1: Design, molecular docking study and ADMET prediction. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2020.10904
  • Solano-Gallego, L., Cardoso, L., Pennisi, M. G., Petersen, C., Bourdeau, P., Oliva, G., Miró, G., Ferrer, L., & Baneth, G. (2017). Diagnostic challenges in the era of canine Leishmania infantum vaccines. Trends in Parasitology, 33(9), 706–717. https://doi.org/10.1016/j.pt.2017.06.004
  • Van Der Auwera, G., & Dujardin, J.-C. (2015). Species typing in dermal leishmaniasis. Clinical Microbiology Reviews, 28(2), 265–294. https://doi.org/10.1128/CMR.00104-14 25672782
  • Van der Auwera, G., & Dujardin, J. C. (2015). Species typing in dermal Leishmaniasis. Clinical Microbiology Reviews, 28(2), 265–294. https://doi.org/10.1128/CMR.00104-14
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vasanthabharathi, V., & Jayalakshmi, S. (2012). Bioactive potential of symbiotic bacteria and fungi from marine sponges. African Journal of Biotechnology, 11(29), 7500–7511. https://doi.org/10.5897/AJB11.1378
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Yim, T., Kanokmedhakul, K., Kanokmedhakul, S., Sanmanoch, W., & Boonlue, S. (2014). A new meroterpenoid tatenoic acid from the fungus Neosartorya tatenoi KKU-2NK23. Natural Product Research, 28(21), 1847–1852. https://doi.org/10.1080/14786419.2014.951353
  • Yin, W. B., Grundmann, A., Cheng, J., & Li, S. M. (2009). Acetylaszonalenin biosynthesis in Neosartorya fischeri identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. Journal of Biological Chemistry, 284(1), 100–109. https://doi.org/10.1074/jbc.M807606200
  • Zin, W. W. M., Buttachon, S., Buaruang, J., Gales, L., Pereira, J. A., Pinto, M. M. M., Silva, A. M. S., & Kijjoa, A. (2015). A new meroditerpene and a new tryptoquivaline analog from the algicolous fungus Neosartorya takakii KUFC 7898. Marine Drugs, 13(6), 3776–3790. https://doi.org/10.3390/md13063776

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.