294
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an in silico study to vitalize the development of optimum engineered strains with high lipid productivity

, , , , ORCID Icon &
Pages 11989-12007 | Received 27 Mar 2021, Accepted 07 Aug 2021, Published online: 20 Aug 2021

Reference

  • Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316–335. https://doi.org/10.1016/j.rser.2018.03.067
  • Arora, N., Pienkos, P. T., Pruthi, V., Poluri, K. M., & Guarnieri, M. T. (2018). Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnology Advances, 36(4), 1274–1292. https://doi.org/10.1016/j.biotechadv.2018.04.005
  • Arts, M. T., Brett, M. T., & Kainz, M. (Eds.). (2009). Lipids in aquatic ecosystems. Springer Science & Business Media.
  • Athenstaedt, K., & Daum, G. (2003). YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. The Journal of Biological Chemistry, 278(26), 23317–23323. https://doi.org/10.1074/jbc.M302577200
  • Athenstaedt, K., & Daum, G. (2005). Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. The Journal of Biological Chemistry, 280(45), 37301–37309. https://doi.org/10.1074/jbc.M507261200
  • Awasthi, M., Jaiswal, N., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2015). Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Journal of Biomolecular Structure & Dynamics, 33(9), 1835–1849. https://doi.org/10.1080/07391102.2014.975282
  • Barka, F., Angstenberger, M., Ahrendt, T., Lorenzen, W., Bode, H. B., & Büchel, C. (2016). Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochimica et Biophysica Acta, 1861(3), 239–248. https://doi.org/10.1016/j.bbalip.2015.12.023
  • Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. https://doi.org/10.1016/j.biortech.2012.08.003
  • Chu, W. L. (2017). Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology, 52(4), 419–437. https://doi.org/10.1080/09670262.2017.1379100
  • Coates, R. C., Trentacoste, E. M., & Gerwick, W. H. (2013). Bioactive and novel chemicals from microalgae. In Handbook of microalgal culture (pp. 504–531). https://doi.org/10.1002/9781118567166.ch26
  • Courchesne, N. M., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141(1–2), 31–41. https://doi.org/10.1016/j.jbiotec.2009.02.018
  • da Mata Madeira, P. V., Zouhir, S., Basso, P., Neves, D., Laubier, A., Salacha, R., Bleves, S., Faudry, E., Contreras-Martel, C., & Dessen, A. (2016). Structural basis of lipid targeting and destruction by the type V secretion system of Pseudomonas aeruginosa. Journal of Molecular Biology, 428(9 Pt A), 1790–1803. https://doi.org/10.1016/j.jmb.2016.03.012
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Eastmond, P. J. (2006). SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. The Plant Cell, 18(3), 665–675. https://doi.org/10.1105/tpc.105.040543
  • Fan, J., Yan, C., Roston, R., Shanklin, J., & Xu, C. (2014). Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby maintaining membrane lipid homeostasis. Plant Cell, 26(10), 4119–4134. https://doi.org/10.1105/tpc.114.130377
  • Fayyaz, M., Chew, K. W., Show, P. L., Ling, T. C., Ng, I. S., & Chang, J. S. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 43, 107554. https://doi.org/10.1016/j.biotechadv.2020.107554
  • Ferreira, R., Teixeira, P. G., Gossing, M., David, F., Siewers, V., & Nielsen, J. (2018). Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 6, 22–27. https://doi.org/10.1016/j.meteno.2018.01.002
  • Hegde, K., Chandra, N., Sarma, S. J., Brar, S. K., & Veeranki, V. D. (2015). Genetic engineering strategies for enhanced biodiesel production. Molecular Biotechnology, 57(7), 606–624. https://doi.org/10.1007/s12033-015-9869-y
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kanai, M., Yamada, T., Hayashi, M., Mano, S., & Nishimura, M. (2019). Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Scientific Reports, 9(1), 8924. https://doi.org/10.1038/s41598-019-45331-8
  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x
  • Kim, M. J., Yang, S. W., Mao, H. Z., Veena, S. P., Yin, J. L., & Chua, N. H. (2014). Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnology for Biofuels, 7(1), 36–36. https://doi.org/10.1186/1754-6834-7-36
  • Kim, R. J., & Suh, M. C. (2016). The GxSxG motif of Arabidopsis monoacylglycerol lipase (MAGL6 and MAGL8) is essential for their enzyme activities. Applied Biological Chemistry, 59(6), 833–840. https://doi.org/10.1007/s13765-016-0232-1
  • Kohli, S., Singh, Y., Sharma, K., Mittal, A., Ehtesham, N. Z., & Hasnain, S. E. (2012). Comparative genomic and proteomic analyses of PE/PPE multigene family of Mycobacterium tuberculosis H37Rv and H37Ra reveal novel and interesting differences with implications in virulence. Nucleic Acids Research, 40(15), 7113–7122. https://doi.org/10.1093/nar/gks465
  • Kong, F., Romero, I. T., Warakanont, J., & Li‐Beisson, Y. (2018). Lipid catabolism in microalgae. The New Phytologist, 218(4), 1340–1348. https://doi.org/10.1111/nph.15047
  • Kumar, G., Shekh, A., Jakhu, S., Sharma, Y., Kapoor, R., & Sharma, T. R. (2020). Bioengineering of microalgae: Recent advances, perspectives, and regulatory challenges for industrial application. Frontiers in Bioengineering and Biotechnology, 8, 914. https://doi.org/10.3389/fbioe.2020.00914
  • Li, Y., Han, D., Hu, G., Sommerfeld, M., & Hu, Q. (2010). Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 107(2), 258–268. https://doi.org/10.1002/bit.22807
  • Li, Y., Han, F., Xu, H., Mu, J., Chen, D., Feng, B., & Zeng, H. (2014). Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresource Technology, 174, 24–32. https://doi.org/10.1016/j.biortech.2014.09.142
  • Liu, X. F. (2014). Components analysis of monomer acid and application in biodiesel. Applied Mechanics and Materials, 521, 629–632. https://doi.org/10.4028/www.scientific.net/AMM.521.629
  • Liu, X. Y., Ouyang, L. L., & Zhou, Z. G. (2016). Phospholipid: Diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress. Scientific Reports, 6, 26610. https://doi.org/10.1038/srep26610
  • Mala, J. G., & Takeuchi, S. (2008). Understanding structural features of microbial lipases – An overview. Analytical Chemistry Insights, 3, ACI.S551. https://doi.org/10.4137/ACI.S551
  • Mao, X., Wu, T., Kou, Y., Shi, Y., Zhang, Y., & Liu, J. (2019). Characterization of type I and type II diacylglycerol acyltransferases from the emerging model alga Chlorella zofingiensis reveals their functional complementarity and engineering potential. Biotechnology for Biofuels, 12, 28. https://doi.org/10.1186/s13068-019-1366-2
  • Misra, N., Panda, P. K., & Parida, B. K. (2014). Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches. Molecular Biology Reports, 41(12), 8319–8332. https://doi.org/10.1007/s11033-014-3733-1
  • Misra, N., Panda, P. K., Patra, M. C., Pradhan, S. K., & Mishra, B. K. (2013). Insights into Molecular Assembly of ACCase Heteromeric Complex in Chlorella variabilis-a homology modelling, docking and molecular dynamic simulation study. Applied Biochemistry and Biotechnology, 170(6), 1437–1457. https://doi.org/10.1007/s12010-013-0277-0
  • Misra, N., Patra, M. C., Panda, P. K., Sukla, L. B., & Mishra, B. K. (2013). Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: A potential algal feedstock for biofuel production. Journal of Biomolecular Structure & Dynamics, 31(3), 241–257. https://doi.org/10.1080/07391102.2012.698247
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nomaguchi, T., Maeda, Y., Liang, Y., Yoshino, T., Asahi, T., & Tanaka, T. (2018). Comprehensive analysis of triacylglycerol lipases in the oleaginous diatom Fistulifera solaris JPCC DA0580 with transcriptomics under lipid degradation. Journal of Bioscience and Bioengineering, 126(2), 258–265. https://doi.org/10.1016/j.jbiosc.2018.03.003
  • Nurniwalis, A. W., Zubaidah, R., Akmar, A. S., Zulkifli, H., Arif, M. M., Massawe, F. J., Chan, K. L., & Parveez, G. K. (2015). Genomic structure and characterization of a lipase class 3 gene and promoter from oil palm. Biologia Plantarum, 59(2), 227–236. https://doi.org/10.1007/s10535-015-0500-7
  • PyMOL. (2017). The PyMOL molecular graphics system, Version 2.0.
  • Rajakumari, S., & Daum, G. (2010). Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. The Journal of Biological Chemistry, 285(21), 15769–15776. https://doi.org/10.1074/jbc.M109.076331
  • Ribeiro, D. A., Bem, D., Vicentini, L. E., Ferraz, R., Murakami, L. F., & Ottoboni, M. T. (2011). The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling. BMC Microbiology, 11, 259–259. https://doi.org/10.1186/1471-2180-11-259
  • Saad, M. G., Dosoky, N. S., Zoromba, M. S., & Shafik, H. M. (2019). Algal biofuels: Current status and key challenges. Energies, 12(10), 1920. https://doi.org/10.3390/en12101920
  • Sahoo, S., Mahapatra, S. R., Das, N., Parida, B. K., Rath, S., Misra, N., & Suar, M. (2020a). Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. Algal Research, 47, 101887. https://doi.org/10.1016/j.algal.2020.101887
  • Sahoo, S., Mahapatra, S. R., Parida, B. K., Narang, P. K., Rath, S., Misra, N., & Suar, M. (2020b). dEMBF v2.0: An updated database of enzymes for microalgal biofuel feedstock. Plant Cell Physiol, 61(5), 1019–1024. https://doi.org/10.1093/pcp/pcaa015
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • San Cha, T., Chen, J. W., Goh, E. G., Aziz, A., & Loh, S. H. (2011). Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology, 102(22), 10633–10640. https://doi.org/10.1016/j.biortech.2011.09.042
  • Santala, S., Efimova, E., Kivinen, V., Larjo, A., Aho, T., Karp, M., & Santala, V. (2011). Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microbial Cell Factories, 10, 36. https://doi.org/10.1186/1475-2859-10-36
  • Sato, H., Saito, K., & Yamazaki, M. (2019). Acceleration of mechanistic investigation of plant secondary metabolism based on computational chemistry. Frontiers in Plant Science, 10, 802. https://doi.org/10.3389/fpls.2019.00802
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica, Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sensoy, O., Almeida, J. G., Shabbir, J., Moreira, I. S., & Morra, G. (2017). Computational studies of G protein-coupled receptor complexes: Structure and dynamics. Methods in Cell Biology, 142, 205–245. https://doi.org/10.1016/bs.mcb.2017.07.011
  • Sharma, P. K., Saharia, M., Srivstava, R., Kumar, S., & Sahoo, L. (2018). Tailoring microalgae for efficient biofuel production. Frontiers in Marine Science, 5, 382. https://doi.org/10.3389/fmars.2018.00382
  • Singh, P., Kumari, S., Guldhe, A., Singh, G., & Bux, F. (2017). ACCase and rbcL gene expression as a function of nutrient and metal stress for enhancing lipid productivity in Chlorella sorokiniana. Energy Conversion and Management, 148, 809–819. https://doi.org/10.1016/j.enconman.2017.06.054
  • Solovchenko, A. E. (2012). Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russian Journal of Plant Physiology, 59(2), 167–176. https://doi.org/10.1134/S1021443712020161
  • Tan, K. W., & Lee, Y. K. (2016). The dilemma for lipid productivity in green microalgae: Importance of substrate provision in improving oil yield without sacrificing growth. Biotechnology for Biofuels, 9, 255. https://doi.org/10.1186/s13068-016-0671-2
  • Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Glé, C., Hartmann, A. C., Hildebrand, M., & Gerwick, W. H. (2013). Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 19748–19753. https://doi.org/10.1073/pnas.1309299110
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vijayakumar, A., Vijayaraj, P., Vijayakumar, A. K., & Rajasekharan, R. (2016). The Arabidopsis ABHD11 mutant accumulates polar lipids in leaves as a consequence of absent acylhydrolase activity. Plant Physiology, 170(1), 180–193. https://doi.org/10.1104/pp.15.01615
  • Vingiani, G. M., De Luca, P., Ianora, A., Dobson, A. D., & Lauritano, C. (2019). Microalgal enzymes with biotechnological applications. Marine Drugs, 17(8), 459. https://doi.org/10.3390/md17080459
  • Wan Afifudeen, C.-L., Loh, S. H., Aziz, A., Takahashi, K., Effendy, A. W. M., & Cha, T. S. (2021). Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Scientific Reports, 11(1), 381–384. https://doi.org/10.1038/s41598-020-79711-2
  • Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., & Goodenough, U. (2009). Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell, 8(12), 1856–1868. https://doi.org/10.1128/EC.00272-09
  • Waschburger, E., Kulcheski, F. R., Veto, N. M., Margis, R., Margis-Pinheiro, M., & Turchetto-Zolet, A. C. (2018). Genome-wide analysis of the Glycerol-3-Phosphate Acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs. Genetics and Molecular Biology, 41(1 suppl 1), 355–370. https://doi.org/10.1590/1678-4685-GMB-2017-0076
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407-10. https://doi.org/10.1093/nar/gkm290
  • Wong, H., & Schotz, M. C. (2002). The lipase gene family. Journal of Lipid Research, 43(7), 993–999. https://doi.org/10.1194/jlr.r200007-jlr200
  • Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R., & Lass, A. (2009). Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. Journal of Lipid Research, 50(1), 3–21. https://doi.org/10.1194/jlr.R800031-JLR200
  • Zhu, L., Gao, N., & Cong, R. G. (2017). Application of biotechnology for the production of biomass-based fuels. BioMed Research International. https://doi.org/10.1155/2017/3896505.
  • Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., & Zechner, R. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science (New York, NY), 306(5700), 1383–1386. https://doi.org/10.1126/science.1100747

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.