1,128
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

In silico prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2

, , ORCID Icon, , ORCID Icon &
Pages 12118-12134 | Received 27 Mar 2021, Accepted 10 Aug 2021, Published online: 06 Sep 2021

References

  • Arndt, A. L., Larson, B. J., & Hogue, B. G. (2010). A conserved domain in the coronavirus membrane protein tail is important for virus assembly. Journal of Virology, 84 (21), 11418–11428. https://doi.org/10.1128/JVI.01131-10
  • Benarba, B., & Pandiella, A. (2020). Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology, 11, 1189. https://doi.org/10.3389/fphar.2020.01189
  • Bhatnagar, T., Murhekar, M. V., Soneja, M., Gupta, N., Giri, S., Wig, N., & Gangakhedkar, R. (2020). Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use. Indian Journal of Medical Research, 151(2), 89. https://doi.org/10.4103/ijmr.IJMR_502_20
  • Bojadzic, D., Alcazar, O., & Buchwald, P. (2020). Methylene blue inhibits the SARS-CoV-2 spike-ACE2 protein-protein interaction-A mechanism that can contribute to its antiviral activity against COVID-19. Frontiers in Pharmacology, 11, 600372. https://doi.org/10.3389/fphar.2020.600372
  • Boukhatem, M. N., & Setzer, W. N. (2020). Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: Future perspectives. Plants (Basel, Switzerland), 9 (6). https://doi.org/10.3390/plants9060800
  • Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J., Liao, X., Gu, Y., Cai, Q., Yang, Y., Shen, C., Li, X., Peng, L., Huang, D., Zhang, J., Zhang, S., Wang, F., Liu, J., Chen, L., … Liu, L. (2020). Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering (Beijing, China), 6(10), 1192–1198. https://doi.org/10.1016/j.eng.2020.03.007
  • Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Chen, Y., Hu, B., Xing, J., & Li, C. (2021). Endophytes: The novel sources for plant terpenoid biosynthesis. Applied Microbiology and Biotechnology, 105(11), 4501–4513. https://doi.org/10.1007/s00253-021-11350-7
  • Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y., & Yuen, K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews, 20(4), 660–694. https://doi.org/10.1128/CMR.00023-07
  • Choi, H. S., Kim, H. S., Min, K. R., Kim, Y., Lim, H. K., Chang, Y. K., & Chung, M. W. (2000). Anti-inflammatory effects of fangchinoline and tetrandrine. Journal of Ethnopharmacology, 69(2), 173–179. https://doi.org/10.1016/S0378-8741(99)00141-5
  • Clark, A. M. (1996). Natural products as a resource for new drugs. Pharmaceutical Research, 13(8), 1133–1144. https://doi.org/10.1023/A:1016091631721
  • Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure (London, England: 1993), 7(3), R55–R60. https://doi.org/10.1016/S0969-2126(99)80033-1
  • de Groot, R. J., Baker, S. C., Baric, R. S., Brown, C. S., Drosten, C., Enjuanes, L., Fouchier, R. A. M., Galiano, M., Gorbalenya, A. E., Memish, Z. A., Perlman, S., Poon, L. L. M., Snijder, E. J., Stephens, G. M., Woo, P. C. Y., Zaki, A. M., Zambon, M., & Ziebuhr, J. (2013). Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 87(14), 7790–7792. https://doi.org/10.1128/JVI.01244-13
  • Dömling, A., & Gao, L. (2020). Chemistry and biology of SARS-CoV-2. Chem, 6(6), 1283–1295. https://doi.org/10.1016/j.chempr.2020.04.023
  • Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108. https://doi.org/10.1007/s00894-009-0454-9
  • El-Hachem, N., Haibe-Kains, B., Khalil, A., Kobeissy, F. H., & Nemer, G. (2017). AutoDock and AutoDock tools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods in Molecular Biology (Clifton, N.J.), 1598, 391–403. https://doi.org/10.1007/978-1-4939-6952-4_20
  • El Sayed, K. A. (2000). Natural products as antiviral agents. In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Vol. 24, pp. 473–572). Elsevier. https://doi.org/10.1016/S1572-5995(00)80051-4
  • Ganjhu, R. K., Mudgal, P. P., Maity, H., Dowarha, D., Devadiga, S., Nag, S., & Arunkumar, G. (2015). Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease, 26(4), 225–236. https://doi.org/10.1007/s13337-015-0276-6
  • Ge, H. M., Peng, H., Guo, Z. K., Cui, J. T., Song, Y. C., & Tan, R. X. (2010). Bioactive alkaloids from the plant endophytic fungus Aspergillus terreus. Planta Medica, 76(8), 822–824. https://doi.org/10.1055/s-0029-1240726
  • Haritakun, R., Rachtawee, P., Chanthaket, R., Boonyuen, N., & Isaka, M. (2010). Butyrolactones from the fungus Aspergillus terreus BCC 4651. Chemical & Pharmaceutical Bulletin, 58(11), 1545–1548. https://doi.org/10.1248/cpb.58.1545
  • Hsieh, D. S., Sarsfield, B. A., Davidovich, M., DiMemmo, L. M., Chang, S.-Y., & Kiang, S. (2010). Use of enthalpy and Gibbs free energy to evaluate the risk of amorphous formation. Journal of Pharmaceutical Sciences, 99(9), 4096–4105. https://doi.org/10.1002/jps.22239
  • Jimenez-Guardeño, J. M., Nieto-Torres, J. L., DeDiego, M. L., Regla-Nava, J. A., Fernandez-Delgado, R., Castaño-Rodriguez, C., & Enjuanes, L. (2014). The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathogens, 10 (8), e1004320. https://doi.org/10.1371/journal.ppat.1004320
  • Joshi, S., Joshi, M., & Degani, M. S. (2020). Tackling SARS-CoV-2: Proposed targets and repurposed Drugs. Future Medicinal Chemistry, 12(17), 1579–1601. https://doi.org/10.4155/fmc-2020-0147
  • Khan, R. J., Kumar Jha, R., Muluneh Amera, G., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-ribose methyltransferase. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1753577
  • Kim, D. E., Min, J. S., Jang, M. S., Lee, J. Y., Shin, Y. S., Song, J. H., Kim, H. R., Kim, S., Jin, Y.-H., & Kwon, S. (2019). Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 9(11). https://doi.org/10.3390/biom9110696
  • Kuo, L., Hurst-Hess, K. R., Koetzner, C. A., & Masters, P. S. (2016). Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. Journal of Virology, 90(9), 4357–4368. https://doi.org/10.1128/JVI.03212-15
  • Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., Ahuja, A., Yung, M. Y., Leung, C. B., To, K. F., Lui, S. F., Szeto, C. C., Chung, S., & Sung, J. J. Y. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine, 348(20), 1986–1994. https://doi.org/10.1056/NEJMoa030685
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Lin, L.-T., Hsu, W.-C., & Lin, C.-C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
  • Liu, C.-H., Lu, C.-H., Wong, S. H., & Lin, L.-T. (2020). Update on antiviral strategies against COVID-19: Unmet needs and prospects. Frontiers in Immunology, 11, 616595. https://doi.org/10.3389/fimmu.2020.616595
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). [Radius of gyration is indicator of compactness of protein structure]. Molekuliarnaia Biologiia, 42(4), 701–706.
  • Matsumoto, T., Hosono-Nishiyama, K., & Yamada, H. (2006). Antiproliferative and apoptotic effects of butyrolactone lignans from Arctium lappa on leukemic cells. Planta Med, 72(3), 276–278. https://doi.org/10.1055/s-2005-916174
  • Mérarchi, M., Sethi, G., Fan, L., Mishra, S., Arfuso, F., & Seok Ahn, K. (2018). Molecular targets modulated by fangchinoline in tumor cells and preclinical models. Molecules (Basel, Switzerland), 23(10). https://doi.org/10.3390/molecules23102538
  • Mesli, F., Ghalem, M., Daoud, I., & Ghalem, S. (2021). Potential inhibitors of angiotensin converting enzyme 2 receptor of COVID-19 by Corchorus olitorius Linn using docking, molecular dynamics, conceptual DFT investigation and pharmacophore mapping. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2021.1896389
  • Mohagheghzadeh, A., Schmidt, T. J., Bayindir, U., Fuss, E., Mehregan, I., & Wilhelm Alfermann, A. (2006). Diarylbutyrolactone Lignans from Linum corymbulosum in vitro cultures. Planta Medica, 72(12), 1165–1167. https://doi.org/10.1055/s-2006-947238
  • Mouffouk, C., Mouffouk, S., Mouffouk, S., Hambaba, L., & Haba, H. (2021). Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). European Journal of Pharmacology, 891, 173759. https://doi.org/10.1016/j.ejphar.2020.173759
  • Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus Res, 131(2), 111–120. https://doi.org/10.1016/j.virusres.2007.09.008
  • Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrakis, D., Nitulescu, G., Ion, G. N. D., Spandidos, D. A., Nikolouzakis, T. K., Drakoulis, N., & Tsatsakis, A. (2020). Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (review). International Journal of Molecular Medicine, 46(2), 467–488. https://doi.org/10.3892/ijmm.2020.4608
  • Ojha, P. K., Kar, S., Krishna, J. G., Roy, K., & Leszczynski, J. (2021). Therapeutics for COVID-19: From computation to practices-where we are, where we are heading to. Molecular Diversity, 25(1), 625–659. https://doi.org/10.1007/s11030-020-10134-x
  • Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F. L., Yu, D., Vararattanavech, A., Soong, T. W., Liu, D. X., & Torres, J. (2009). Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathogens, 5(7), e1000511. https://doi.org/10.1371/journal.ppat.1000511
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Potroz, M. G., & Cho, N.-J. (2015). Natural products for the treatment of Trachoma and Chlamydia trachomatis. Molecules (Basel, Switzerland), 20(3), 4180–4203. https://doi.org/10.3390/molecules20034180
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Qin, J.-J., Zhu, J.-X., Zeng, Q., Cheng, X.-R., Zhu, Y., Zhang, S.-D., Shan, L., Jin, H.-Z., & Zhang, W.-D. (2011). Pseudoguaianolides and guaianolides from Inula hupehensis as potential anti-inflammatory agents. Journal of Natural Products, 74(9), 1881–1887. https://doi.org/10.1021/np200319x
  • Rabaan, A. A., Al-Ahmed, S. H., Sah, R., Tiwari, R., Yatoo, M. I., Patel, S. K., Pathak, M., Malik, Y. S., Dhama, K., Singh, K. P., Bonilla-Aldana, D. K., Haque, S., Martinez-Pulgarin, D. F., Rodriguez-Morales, A. J., & Leblebicioglu, H. (2020). SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Annals of Clinical Microbiology and Antimicrobials, 19(1), 40. https://doi.org/10.1186/s12941-020-00384-w
  • Rani, J., Shah, A. B. R., & Ramachandran, S. (2015). Pubmed.MineR: An R package with text-mining algorithms to analyse PubMed abstracts. Journal of Biosciences, 40(4), 671–682. https://doi.org/10.1007/s12038-015-9552-2
  • Rates, S. M. (2001). Plants as source of drugs. Toxicon, 39(5), 603–613. https://doi.org/10.1016/s0041-0101(00)00154-9. https://doi.org/10.1016/S0041-0101(00)00154-9
  • Rigsby, R. E., & Parker, A. B. (2016). Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education: A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 44(5), 433–437. https://doi.org/10.1002/bmb.20966
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., & Costanzo, L. D. (2017). The RCSB Protein Data Bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271–D281. https://doi.org/10.1093/nar/gkw1000
  • Sarma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., & Singh, S. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-NCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1753580
  • Satarker, S., & Nampoothiri, M. (2020). Structural proteins in severe acute respiratory syndrome coronavirus-2. Archives of Medical Research, 51(6), 482–491. https://doi.org/10.1016/j.arcmed.2020.05.012
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences, 19(6). https://doi.org/10.3390/ijms19061578
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Unni, S., Aouti, S., Thiyagarajan, S., & Padmanabhan, B. (2020). Identification of a repurposed drug as an inhibitor of spike protein of human coronavirus SARS-CoV-2 by computational methods. Journal of Biosciences, 45, 130.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanden Eynde, J. J. (2020). COVID-19: An update about the discovery clinical trial. Pharmaceuticals (Basel, Switzerland), 13(5). https://doi.org/10.3390/ph13050098
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wan, Z., Lu, Y., Liao, Q., Wu, Y., & Chen, X. (2012). Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with Gp160 proteolytic processing. PLoS One, 7(6), e39225. https://doi.org/10.1371/journal.pone.0039225
  • Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res, 37 (Web Server Issue), W623–W633. https://doi.org/10.1093/nar/gkp456
  • Weber, C., & Opatz, T. (2019). Bisbenzylisoquinoline alkaloids. The Alkaloids. Chemistry and Biology, 81, 1–114. https://doi.org/10.1016/bs.alkal.2018.07.001.
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-NCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S., & Lu, L. (2020). Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research, 30(4), 343–355. https://doi.org/10.1038/s41422-020-0305-x
  • Xie, L., & Xie, L. (2019). Pathway-centric structure-based multi-target compound screening for anti-virulence drug repurposing. International Journal of Molecular Sciences, 20(14), E3504. https://doi.org/10.3390/ijms20143504
  • Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 10(4), 821. https://doi.org/10.3390/cells10040821
  • Yang, J., & Zhang, Y. (2015). Protein structure and function prediction using I-TASSER. Current Protocols in Bioinformatics, 52, 5.8.1–5.8.15. https://doi.org/10.1002/0471250953.bi0508s52
  • Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 367(19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721
  • Zhang, H.-J., Nguyen, V. H., Nguyen, M. C., Doel Soejarto, D., Pezzuto, J. M., Fong, H. H., & Tan, G. T. (2005). Sesquiterpenes and butenolides, natural anti-HIV constituents from Litsea verticillata. Planta Medica, 71(5), 452–457. https://doi.org/10.1055/s-2005-864142
  • Zhang, H.-W., Zhang, J., Hu, S., Zhang, Z.-J., Zhu, C.-J., Ng, S. W., & Tan, R.-X. (2010). Ardeemins and cytochalasins from Aspergillus terreus residing in Artemisia annua. Planta Medica, 76(14), 1616–1621. https://doi.org/10.1055/s-0030-1249781
  • Zhou, M., Du, G., Yang, H.-Y., Xia, C.-F., Yang, J.-X., Ye, Y.-q., Gao, X.-M., Li, X.-N., & Hu, Q.-F. (2015). Antiviral butyrolactones from the endophytic fungus Aspergillus versicolor. Planta Medica, 81(3), 235–240. https://doi.org/10.1055/s-0034-1396153
  • Zhou, M., Miao, M.-M., Du, G., Li, X.-N., Shang, S.-Z., Zhao, W., Liu, Z.-H., Yang, G.-Y., Che, C.-T., Hu, Q.-F., & Gao, X.-M. (2014). Aspergillines A-E, highly oxygenated hexacyclic indole-tetrahydrofuran-tetramic acid derivatives from Aspergillus versicolor. Organic Letters, 16(19), 5016–5019. https://doi.org/10.1021/ol502307u
  • Zhou, R., Zeng, R., von Brunn, A., & Lei, J. (2020). Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein. Molecular Biomedicine, 1(1), 2. https://doi.org/10.1186/s43556-020-00001-4
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-NCoV/SARS-CoV-2. Cell Discovery, 6(1), 14. https://doi.org/10.1038/s41421-020-0153-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.