269
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study

, , ORCID Icon &
Pages 12165-12183 | Received 16 Jun 2021, Accepted 10 Aug 2021, Published online: 31 Aug 2021

References

  • Ahola, T., & Ahlquist, P. (1999). Putative RNA capping activities encoded by brome mosaic virus: Methylation and covalent binding of guanylate by replicase protein RAP-1. Journal of Virology, 73(12), 10061–10069. https://doi.org/10.1128/JVI.73.12.10061-10069.1999
  • Argos, P. (1988). A sequence motif in many polymerases. Nucleic Acids Research, 16(21), 9909–9916. https://doi.org/10.1093/nar/16.21.9909
  • Bailey, J. A. (1973). Production of antifungal compounds in cowpea (Vigna sinensis) and pea (Pisum sativum) after virus infection. Microbiology, 75, 119–123.
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46, 257–263. https://doi.org/10.1093/nar/gky318
  • Bona, S. D. G., Bertazzon, N., Angelini, E., & Vincenzi, S. (2020). Influence of pruning time and viral infection on stilbenoid levels in Pinot noir grape canes. Journal of the Science of Food and Agriculture, 100(4), 1741–1747. https://doi.org/10.1002/jsfa.10195
  • Brylinski, M., & Skolnick, J. (2008). A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proceedings of the National Academy of Sciences, 105(1), 129–134. https://doi.org/10.1073/pnas.0707684105
  • Burden, R. S., Bailey, J. A., & Vincent, G. G. (1975). Glutinosone, a new antifungal sesquiterpene from Nicotiana glutinosa infected with tobacco mosaic virus. Phytochemistry, 14(1), 221–223. https://doi.org/10.1016/0031-9422(75)85043-6
  • Chaube, H. S., & Pundhir, V. S. (2005). Crop diseases and their management. PHI Learning Pvt. Ltd.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–3.
  • Fariselli, P., Riccobelli, P., & Casadio, R. (1999). Role of evolutionary information in predicting the disulfide‐bonding state of cysteine in proteins. Proteins: Structure, Function, and Genetics, 36(3), 340–346. https://doi.org/10.1002/(SICI)1097-0134(19990815)36:3<340::AID-PROT8>3.0.CO;2-D
  • Ferrè, F., & Clote, P. (2006). DiANNA 1.1: An extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Research, 34, 182–185.
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In Walker JM (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences : CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., & Blinov, V. M. (1988). A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Letters, 235(1-2), 16–24. https://doi.org/10.1016/0014-5793(88)81226-2
  • Gorbalenya, A. E., Pringle, F. M., Zeddam, J. L., Luke, B. T., Cameron, C. E., Kalmakoff, J., Hanzlik, T. N., Gordon, K. H., & Ward, V. K. (2002). The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. Journal of Molecular Biology, 324(1), 47–62. https://doi.org/10.1016/s0022-2836(02)01033-1
  • Gowthaman, U., Jayakanthan, M., & Sundar, D. (2008). Molecular docking studies of dithionitrobenzoic acid and its related compounds to protein disulfide isomerase: Computational screening of inhibitors to HIV-1 entry. BMC Bioinformatics, 9(Suppl 12), S14– 10. https://doi.org/10.1186/1471-2105-9-S12-S14
  • Guest, D. (2017). Phytoalexins, naturals plant protecction. Encyclopedia of applied plant sciences. Academic press.
  • Guo, W., Lu, X., Liu, B., Yan, H., & Feng, J. (2021). Anti-TMV activity and mode of action of three alkaloids isolated from Chelidonium majus . Pest Management Science, 77(1), 510–517. https://doi.org/10.1002/ps.6049
  • Guruprasad, K., Reddy, B. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37, 285–306. https://doi.org/10.1146/annurev.phyto.37.1.285
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R., & Kaesberg, P. (1984). Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization. Proceedings of the National Academy of Sciences of the United States of America, 81(14), 4358–4362. https://doi.org/10.1073/pnas.81.14.4358
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895–1898.
  • Jeandet, P. (2015). Phytoalexins: Current progress and future prospects. Molecules, 20(2), 2770–2774. https://doi.org/10.3390/molecules20022770
  • Jethra, G., Mishra, A. K., Pandey, P. S., & Chandrasekharan, H. (2012). Structure and function prediction of unknown wheat protein using LOMETS and I-TASSER. Indian Journal of Agricultural Sciences, 82, 867.
  • Kant, K., Rawat, R., Bhati, V., Bhosale, S., Sharma, D., Banerjee, S., & Kumar, A. (2020). Computational identification of natural product leads that inhibit mast cell chymase: An exclusive plausible treatment for Japanese encephalitis. Journal of Biomolecular Structure and Dynamics, 39(4), 1–10.
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research., 40, 294–307.
  • Kong, F., Sivakumaran, K., & Kao, C. (1999). The N-terminal half of the brome mosaic virus 1a protein has RNA capping-associated activities: specificity for GTP and S-adenosylmethionine. Virology, 259(1), 200–210. https://doi.org/10.1006/viro.1999.9763
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, L., Li, Z., Wang, K., Zhao, S., Feng, J., Li, J., Yang, P., Liu, Y., Wang, L., Li, Y., Shang, H., & Wang, Q. (2014). Design, synthesis, and biological activities of aromatic gossypol Schiff base derivatives. Journal of Agricultural and Food Chemistry, 62(46), 11080–11108. https://doi.org/10.1021/jf504411g
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lygin, A. V., Hill, C. B., Zernova, O. V., Crull, L., Widholm, J. M., Hartman, G. L., & Lozovaya, V. V. (2010). Response of soybean pathogens to glyceollin. Phytopathology, 100(9), 897–903. https://doi.org/10.1094/PHYTO-100-9-0897
  • Naidoo, D., Roy, A., Kar, P., Mutanda, T., & Anandraj, A. (2020). Cyanobacterial metabolites as promising drug leads against the Mpro and PLpro of SARS-CoV-2: An in silico analysis. Journal of Biomolecular Structure and Dynamics, 18, 1–13.
  • Natesh, J., Mondal, P., Kaur, B., Abdul Salam, A. A., Kasilingam, S., & Meeran, S. M. (2021). Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Computers in Biology and Medicine, 133, 104383. https://doi.org/10.1016/j.compbiomed.2021.104383
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33– 34. https://doi.org/10.1186/1758-2946-3-33
  • Onawole, A. T., Kolapo, T. U., Sulaiman, K. O., & Adegoke, R. O. (2018). Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring. Computational Biology and Chemistry, 72, 170–180. https://doi.org/10.1016/j.compbiolchem.2017.11.006
  • Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537. https://doi.org/10.3389/fpls.2017.00537
  • Parniske, M., Ahlborn, B., & Werner, D. (1991). Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. Journal of Bacteriology, 173(11), 3432–3449. https://doi.org/10.1128/jb.173.11.3432-3439.1991
  • Pathak, R. K., Baunthiyal, M., Shukla, R., Pandey, D., Taj, G., & Kumar, A. (2017). In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against alternaria blight disease in brassica species. Frontiers in Plant Science, 8, 609. https://doi.org/10.3389/fpls.2017.00609
  • Rawat, R., & Verma, S. M. (2020a). An exclusive computational insight toward molecular mechanism of MMV007571, a multitarget inhibitor of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 38(18), 5362–5373. https://doi.org/10.1080/07391102.2019.1700165
  • Rawat, R., & Verma, S. M. (2020b). High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of Pf DHODH and Pf Cytbc1 complex to combat drug resistant malaria. Journal of Biomolecular Structure and Dynamics, 39(14), 1–12.
  • Roy, A., Yang, J., & Zhang, Y. (2012). COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, 40(Web Server issue), W471–507.
  • Salánki, K., Gellért, Á., Nemes, K., Divéki, Z., & Balázs, E. (2018). Molecular modeling for better understanding of cucumovirus pathology. Advances in Virus Research, 102, 59–88.
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1), 57–61.
  • Sidhu, K. S., Bhangu, S. K., Pathak, R. K., Yadav, I. S., & Chhuneja, P. (2020). Identification of natural lead compounds for leaf rust of Wheat: A molecular docking and simulation study. Journal of Proteins and Proteomics, 11(4), 283–295. https://doi.org/10.1007/s42485-020-00048-5
  • Sirin, S., Kumar, R., Martinez, C., Karmilowicz, M. J., Ghosh, P., Abramov, Y. A., Martin, V., & Sherman, W. (2014). A computational approach to enzyme design: Predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring. Journal of Chemical Information and Modeling, 54(8), 2334–2346. https://doi.org/10.1021/ci5002185
  • Sivaramakrishnan, V., Thiyagarajan, C., Kalaivanan, S., Selvakumar, R., Anusuyadevi, M., & Jayachandran, K. S. (2012). Homology modeling, molecular docking and electrostatic potential analysis of MurF ligase from Klebsiella pneumonia. Bioinformation, 8(10), 466–473. https://doi.org/10.6026/97320630008466
  • Smith, E. C. (2017). The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathogens, 13(4), e1006254. https://doi.org/10.1371/journal.ppat.1006254
  • Song, H., Liu, Y., Liu, Y., Wang, L., & Wang, Q. (2014). Synthesis and antiviral and fungicidal activity evaluation of β-carboline, dihydro-β-carboline, tetrahydro-β-carboline alkaloids, and their derivatives. Journal of Agricultural and Food Chemistry, 62(5), 1010–1018. https://doi.org/10.1021/jf404840x
  • Takasugi, M., Nagao, S., Masamune, T., Shirata, A., & Takahashi, K. (1979). Structures of moracins E, F, G, and H, new phytoalexins from diseased mulberry. Tetrahedron Letters, 20(48), 4675–4678. https://doi.org/10.1016/S0040-4039(01)86680-6
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tzean, Y., Lee, M. C., Jan, H. H., Chiu, Y. S., Tu, T. C., Hou, B. H., Chen, H. M., Chou, C. N., & Yeh, H. H. (2019). Cucumber mosaic virus-induced gene silencing in banana. Scientific Reports, 9(1), 11553–11559. https://doi.org/10.1038/s41598-019-47962-3
  • Watt, L. G., Crawshaw, S., Rhee, S. J., Murphy, A. M., Canto, T., & Carr, J. P. (2020). The cucumber mosaic virus RAP-1 protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLOS Pathogens, 16(12), e1009125. https://doi.org/10.1371/journal.ppat.1009125
  • Wu, S., Skolnick, J., & Zhang, Y. (2007). Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biology, 5(1), 17–10. https://doi.org/10.1186/1741-7007-5-17
  • Wu, S. T., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Research, 10, 3375–3382.
  • Yang, J., Roy, A., & Zhang, Y. (2013). Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588–2595. https://doi.org/10.1093/bioinformatics/btt447
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40– 48. https://doi.org/10.1186/1471-2105-9-40
  • Zhang, Y., & Skolnick, J. (2004). Automated structure prediction of weakly homologous proteins on a genomic scale. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7594–7599. https://doi.org/10.1073/pnas.0305695101
  • Zheng, W., Zhou, X., Wuyun, Q., Pearce, R., Li, Y., & Zhang, Y. (2020). FUpred: Detecting protein domains through deep-learning-based contact map prediction. Bioinformatics (Oxford, England), 36(12), 3749–3757. https://doi.org/10.1093/bioinformatics/btaa217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.