633
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Discovering potential inhibitors against SARS-CoV-2 by targeting Nsp13 Helicase

, , , &
Pages 12062-12074 | Received 19 Nov 2020, Accepted 07 Aug 2021, Published online: 28 Aug 2021

References

  • Adedeji, A. O., Singh, K., Kassim, A., Coleman, C. M., Elliott, R., Weiss, S. R., Frieman, M. B., & Sarafianos, S. G. (2014). Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrobial Agents and Chemotherapy, 58(8), 4894–4898. https://doi.org/10.1128/AAC.02994-14
  • Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., Smith, E. C., Case, J. B., Feng, J. Y., Jordan, R., Ray, A. S., Cihlar, T., Siegel, D., Mackman, R. L., Clarke, M. O., Baric, R. S., & Denison, M. R. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio, 9(2), e00221-18. https://doi.org/10.1128/mBio.00221-18
  • Azam, S. S., Sarfaraz, S., & Abro, A. (2014). Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase. Molecular Biology Reports, 41(8), 5039–5052. https://doi.org/10.1007/s11033-014-3370-8
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C. (2020). Remdesivir for the treatment of covid-19—Preliminary report. New England Journal of Medicine, 383(19), 1813–1826. NEJMoa2007764. Advance online publication. https://doi.org/10.1056/NEJMoa2007764
  • Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. v., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berk, H., Henk, B., B, H JC., and., & F, J G EM. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
  • Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2020). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand-based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure & Dynamics, 1–15. Advance online publication. https://doi.org/10.1080/07391102.2020.1739557
  • Bhowmik, D., Nandi, R., Jagadeesan, R., Kumar, N., Prakash, A., & Kumar, D. (2020). Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infection, Genetics and Evolution, 84, 104451. https://doi.org/10.1016/j.meegid.2020.104451
  • Boonstra, S., Onck, P. R., & Giessen, E. (2016). CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. The Journal of Physical Chemistry. B, 120(15), 3692–3698. https://doi.org/10.1021/acs.jpcb.6b01316
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chandrasekaran, K., & Thilak Kumar, R. (2016). Molecular properties prediction, docking studies and antimicrobial screening of ornidazole and its derivatives. Journal of Chemical and Pharmaceutical Research, 8(3), 849–861.
  • Cisneros, G. A., Karttunen, M., Ren, P., & Sagui, C. (2014). Classical electrostatics for biomolecular simulations. Chemical Reviews, 114(1), 779–814. https://doi.org/10.1021/cr300461d
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2014). Small-molecule library screening by docking with PyRx. Chemical Biology, 2014, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Deval, J., Fung, A., Stevens, S. K., Jordan, P. C., Gromova, T., Taylor, J. S., Hong, J., Meng, J., Wang, G., Dyatkina, N., Prhavc, M., Symons, J. A., & Beigelman, L. (2016). Biochemical effect of resistance mutations against synergistic inhibitors of RSV RNA polymerase. PLoS One, 11(5), e0154097. https://doi.org/10.1371/journal.pone.0154097
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology (Clifton, N.J.), 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Goldman, J. D., Lye, D. C. B., Hui, D. S., Marks, K. M., Bruno, R., Montejano, R., Spinner, C. D., Galli, M., Ahn, M.-Y., Nahass, R. G., Chen, Y.-S., SenGupta, D., Hyland, R. H., Osinusi, A. O., Cao, H., Blair, C., Wei, X., Gaggar, A., Brainard, D. M., … Subramanian, A. (2020). Remdesivir for 5 or 10 days in patients with severe covid-19. The New England Journal of Medicine, 383(19), 1827–1837. https://doi.org/10.1056/NEJMoa2015301
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Han, F., Dou, M., Wang, Y., Xu, C., Li, Y., Ding, X., Xue, W., Zheng, J., Tian, P., & Ding, C. (2020). Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochimica et Biophysica Sinica, 52(2), 125–132. https://doi.org/10.1093/abbs/gmz145
  • Horby, P., Lim, W. S., & Emberson, J. (2020). Effect of dexamethasone in hospitalized patients withcovid-19: Preliminary report. medRxiv, Preprint. https://doi.org/10.1101/2020.06.22.20137273
  • Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12(Suppl 1), S33. https://doi.org/10.1186/1471-2105-12-S1-S33
  • Huang, K. W., Hsu, K. C., Chu, L. Y., Yang, J. M., Yuan, H. S., & Hsiao, Y. Y. (2016). Identification of inhibitors for the DEDDh family of exonucleases and a unique inhibition mechanism by crystal structure analysis of CRN-4 bound with 2-morpholin-4-ylethanesulfonate (MES). Journal of Medicinal Chemistry, 59(17), 8019–8029. https://doi.org/10.1021/acs.jmedchem.6b00794
  • Huey, R., & Morris, G. M. (2008). Using AutoDock 4 with AutoDocktools: A tutorial (pp. 54–56). The Scripps Research Institute, Molecular Graphics Laboratory.
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jeong, J. W., Jin, C. Y., Park, C., Hong, S. H., Kim, G. Y., Jeong, Y. K., Lee, J. D., Yoo, Y. H., & Choi, Y. H. (2011). Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicology In Vitro, 25(4), 817–824. https://doi.org/10.1016/j.tiv.2011.02.001
  • Jia, Z., Yan, L., Ren, Z., Wu, L., Wang, J., Guo, J., Zheng, L., Ming, Z., Zhang, L., Lou, Z., & Rao, Z. (2019). Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Research, 47(12), 6538–6550. https://doi.org/10.1093/nar/gkz409
  • Johnson, R. M., & Vinetz, J. M. (2020). Dexamethasone in the management of covid-19. BMJ, 370, m2648. https://doi.org/10.1136/bmj.m2648
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joung, I. S., & Cheatham III, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry. B, 112(30), 9020–9041. https://doi.org/10.1021/jp8001614
  • Katsiki, N., Banach, M., & Mikhailidis, D. P. (2020). Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of the COVID-19 pandemic. Archives of Medical Science : AMS, 16(3), 485–489. https://doi.org/10.5114/aoms.2020.94503
  • Kawashima, M., Nemoto, O., Honda, M., Watanabe, D., Nakayama, J., Imafuku, S., Kato, T., & Katsuramaki, T. (2017). Amenamevir, a novel helicase-primase inhibitor, for treatment of herpes zoster: A randomized, double-blind, valaciclovir-controlled phase 3 study. The Journal of Dermatology, 44(11), 1219–1227. https://doi.org/10.1111/1346-8138.13948
  • Kim, S., Lee, J., Jo, S., Brooks, C. L., 3rd, Lee, H. S., & Im, W. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry, 38(21), 1879–1886. https://doi.org/10.1002/jcc.24829
  • Kumar, N., Srivastava, R., Prakash, A., & Lynn, A. M. (2020). Structure-based virtual screening, molecular dynamics simulation and MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium Tuberculosis. Journal of Biomolecular Structure & Dynamics, 38(11), 3396–3315. https://doi.org/10.1080/07391102.2019.1657499
  • Li, G., Nakagome, I., Hirono, S., Itoh, T., & Fujiwara, R. (2015). Inhibition of adenosine deaminase (ADA)-mediated metabolism of cordycepin by natural substances. Pharmacology Research & Perspectives, 3(2), e00121. https://doi.org/10.1002/prp2.121
  • Liang, R., Wang, L., Zhang, N., Deng, X., Su, M., Su, Y., Hu, L., He, C., Ying, T., Jiang, S., & Yu, F. (2018). Development of small-molecule MERS-CoV inhibitors. Viruses, 10(12), 721. https://doi.org/10.3390/v10120721
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Majewski, M., Ruiz-Carmona, S., & Barril, X. (2019). An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry, 2(1), 110. https://doi.org/10.1038/s42004-019-0205-5
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mishra, C. B., Kumari, S., Prakash, A., Yadav, R., Tiwari, A. K., Pandey, P., & Tiwari, M. (2018). Discovery of novel methylsulfonyl phenyl derivatives as potent human Cyclooxygenase-2 inhibitors with effective anticonvulsant action: Design, synthesis, in-silico, in-vitro and in-vivo evaluation. European Journal of Medicinal Chemistry, 151, 520–532. https://doi.org/10.1016/j.ejmech.2018.04.007
  • Mishra, C. B., Pandey, P., Sharma, R. D., Malik, M. Z., Mongre, R. K., Lynn, A. M., Prasad, R., Jeon, R., & Prakash, A. (2021). Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: An integrated computational approach. Briefings in Bioinformatics, 22(2), 1346–1360. https://doi.org/10.1093/bib/bbaa378
  • Mirza, M. U., & Froeyen, M. (2020). Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmaceutical Analysis, 10(4), 320–328. https://doi.org/10.1016/j.jpha.2020.04.008
  • Mokhnache, K., Madoui, S., Khither, H., & Charef, N. (2019). Drug-likeness and pharmacokinetics of a bis-phenolic ligand: Evaluations by computational methods. Scholar Journal of Applied Medicinal Science, January, 7(1), 167–173. https://doi.org/10.21276/sjams.2019.7.1.31
  • Newman, J. O., Yosaatmadja, Y., Douangamath, A., Arrowsmith, C. H., Von Delft, F., Edwards, A., Bountra, C., & Gileadi, O. (2020). Crystal structure of the SARS-CoV-2 helicase at 1.94 Angstrom resolution. https://doi.org/10.2210/pdb6zsl/pdb
  • Nisha, C. M., Kumar, A., Nair, P., Gupta, N., Silakari, C., Tripathi, T., & Kumar, A. (2016). Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Advances in Bioinformatics, 2016, 9258578. https://doi.org/10.1155/2016/9258578
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Pal, S., & Talukdar, A. (2020). Compilation of potential protein targets for SARS-CoV-2: Preparation of homology model and active site determination for future rational antiviral design. ChemRxiv, Preprint. https://doi.org/10.26434/chemrxiv.12084468.v1
  • Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196
  • Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews. Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147
  • Prakash, A., & Luthra, P. M. (2012). Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization. Amino Acids, 43(4), 1451–1464. https://doi.org/10.1007/s00726-012-1218-x
  • Pruijssers, A. J., & Denison, M. R. (2019). Nucleoside analogues for the treatment of coronavirus infections. Current Opinion in Virology, 35, 57–62. https://doi.org/10.1016/j.coviro.2019.04.002
  • Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Rocco, A. G., Mollica, L., Ricchiuto, P., Baptista, A. M., Gianazza, E., & Eberini, I. (2008). Characterization of the protein unfolding processes induced by urea and temperature. Biophysical Journal, 94(6), 2241–2251. https://doi.org/10.1529/biophysj.107.115535
  • Sapay, N., & Tieleman, D. P. (2011). Combination of the CHARMM27 force field with united-atom lipid force fields. Journal of Computational Chemistry, 32(7), 1400–1410. https://doi.org/10.1002/jcc.21726
  • Sayers, E. W., Agarwala, R., Bolton, E. E., Brister, J. R., Canese, K., Clark, K., Connor, R., Fiorini, N., Funk, K., Hefferon, T., Holmes, J. B., Kim, S., Kimchi, A., Kitts, P. A., Lathrop, S., Lu, Z., Madden, T. L., Marchler-Bauer, A., Phan, L., … Ostell, J. (2019). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 47(D1), D23–D28. https://doi.org/10.1093/nar/gky1069
  • Shiraki, K. (2017). Helicase-primase inhibitor amenamevir for herpesvirus infection: Towards practical application for treating herpes zoster. Drugs of Today (Barcelona, Spain : 1998), 53(11), 573–584. https://doi.org/10.1358/dot.2017.53.11.2724803
  • Shu, T., Huang, M., Wu, D., Ren, Y., Zhang, X., Han, Y., Mu, J., Wang, R., Qiu, Y., Zhang, D. Y., & Zhou, X. (2020). SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virologica Sinica, 35(3), 321–329. https://doi.org/10.1007/s12250-020-00242-1
  • Singleton, M. R., Dillingham, M. S., & Wigley, D. B. (2007). Structure and mechanism of helicases and nucleic acid translocases. Annual Review of Biochemistry, 76, 23–50. https://doi.org/10.1146/annurev.biochem.76.052305.115300
  • Soltani, M., Malek, R. A., Elmarzugi, N. A., Mahomoodally, M. F., Uy, D., Leng, O. M., & El-Enshasy, H. A. (2018). Cordycepin: A biotherapeutic molecule from medicinal mushroom. Directed Motivational Currents in L2, 2018, 319–349. https://doi.org/10.1007/978-3-030-02622-6_16
  • Sood, D., Kumar, N., Singh, A., Sakharkar, M. K., Tomar, V., & Chandra, R. (2018). Antibacterial and pharmacological evaluation of fluoroquinolones: A chemoinformatics approach. Genomics & Informatics, 16(3), 44–51. https://doi.org/10.5808/GI.2018.16.3.44
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interface. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics (Oxford, England), 36(8), 2647. https://doi.org/10.1093/bioinformatics/btaa058
  • Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie International Edition, 38(24), 3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U
  • Te, H. S., Randall, G., & Jensen, D. M. (2007). Mechanism of action of ribavirin in the treatment of chronic hepatitis C. Gastroenterology & Hepatology, 3(3), 218–225.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Tuli, H. S., Sharma, A. K., Sandhu, S. S., & Kashyap, D. (2013). Cordycepin: A bioactive metabolite with therapeutic potential. Life Sciences, 93(23), 863–869. https://doi.org/10.1016/j.lfs.2013.09.030
  • Valdés, J. J., Butterill, P. T., & Růžek, D. (2017). Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors. Biochemical and Biophysical Research Communications, 492(4), 652–658. https://doi.org/10.1016/j.bbrc.2017.03.068
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wald, A., Corey, L., Timmler, B., Magaret, A., Warren, T., Tyring, S., Johnston, C., Kriesel, J., Fife, K., Galitz, L., Stoelben, S., Huang, M. L., Selke, S., Stobernack, H. P., Ruebsamen-Schaeff, H., & Birkmann, A. (2014). Helicase-primase inhibitor pritelivir for HSV-2 infection. The New England Journal of Medicine, 370(3), 201–210. https://doi.org/10.1056/NEJMoa1301150
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, D. D., Ou-Yang, L., Xie, H., Zhu, M., & Yan, H. (2020). Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods. Computational and Structural Biotechnology Journal, 18, 439–454. https://doi.org/10.1016/j.csbj.2020.02.007
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, 395(10236), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
  • Wennberg, C. L., Murtola, T., Pall, S., Abraham, M. J., Hess, B., & Lindahl, E. (2015). Direct-space corrections enable fast and accurate Lorentz-Berthelot combination rule Lennard-Jones lattice summation. Journal of Chemical Theory and Computation, 11(12), 5737–5746. https://doi.org/10.1021/acs.jctc.5b00726
  • Wozniak, M. A., Frost, A. L., & Itzhaki, R. F. (2013). The helicase-primase inhibitor BAY 57-1293 reduces the Alzheimer’s disease-related molecules induced by herpes simplex virus type 1. Antiviral Research, 99(3), 401–404. https://doi.org/10.1016/j.antiviral.2013.07.003
  • Yang, J. M., & Chen, C. C. (2004). GEMDOCK: A generic evolutionary method for molecular docking. Proteins, 55(2), 288–304. https://doi.org/10.1002/prot.20035
  • Yedavalli, V. S. R. K., Zhang, N., Cai, H., Zhang, P., Starost, M. F., Hosmane, R. S., & Jeang, K.-T. (2008). Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. Journal of Medicinal Chemistry, 51(16), 5043–5051. https://doi.org/10.1021/jm800332m
  • Zhang, N., Chen, H. M., Koch, V., Schmitz, H., Liao, C. L., Bretner, M., Bhadti, V. S., Fattom, A. I., Naso, R. B., Hosmane, R. S., & Borowski, P. (2003). Ring-expanded (“fat”) nucleoside and nucleotide analogues exhibit potent in vitro activity against flaviviridae NTPases/helicases, including those of the West Nile virus, hepatitis C virus, and Japanese encephalitis virus. Journal of Medicinal Chemistry, 46(19), 4149–4164. https://doi.org/10.1021/jm030842j
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6(1), 14. https://doi.org/10.1038/s41421-020-0153-3
  • Zhou, X., Luo, L., Dressel, W., Shadier, G., Krumbiegel, D., Schmidtke, P., Zepp, F., & Meyer, C. U. (2008). Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. The American Journal of Chinese Medicine, 36(5), 967–980. https://doi.org/10.1142/S0192415X08006387
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses - drug discovery and therapeutic options. Nature Reviews. Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.