278
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Promoter sequence interaction and structure based multi-targeted (redox regulatory genes) molecular docking analysis of vitamin E and curcumin in T4 induced oxidative stress model using H9C2 cardiac cell line

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 12316-12335 | Received 14 Mar 2021, Accepted 16 Aug 2021, Published online: 31 Aug 2021

References

  • Aebi, H. Catalase. (1974). In Bergmayer HU (Ed.), Methods of enzymatic analysis (Vol II, pp. 673–683). Academic press.
  • Afsar, B., Yilmaz, M. I., Siriopol, D., Unal, H. U., Saglam, M., Karaman, M., Gezer, M., Sonmez, A., Eyileten, T., Aydin, I., Hamcan, S., Oguz, Y., Covic, A., & Kanbay, M. (2017). Thyroid function and cardiovascular events in chronic kidney disease patients. Journal of Nephrology, 30(2), 235–242. https://doi.org/10.1007/s40620-016-0300-y
  • Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti- inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology, 41(1), 40–59. https://doi.org/10.1016/j.biocel.2008.06.010
  • Ahmed, S. M., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). NRF-2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(2), 585–597. https://doi.org/10.1016/j.bbadis.2016.11.005
  • Araujo, A. S. R., Schenkel, P., Enzveiler, A. T., Fernandes, T. R. G., Partata, W. A., Llesuy, S., Ribeiro, M. F. M., Khaper, N., Singal, P. K., & Belló-Klein, A. (2008). The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. Journal of Molecular Endocrinology, 41(6), 423–430. https://doi.org/10.1677/JME-08-0024
  • Bano, A., Chaker, L., de Maat, M. P. M., Atiq, F., Kavousi, M., Franco, O. H., Mattace-Raso, F. U. S., Leebeek, F. W. G., & Peeters, R. P. (2019). Thyroid Function and Cardiovascular Disease: The Mediating Role of Coagulation Factors. The Journal of Clinical Endocrinology and Metabolism, 104(8), 3203–3212. https://doi.org/10.1210/jc.2019-00072
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D. & Salmon, J. K. (2006). Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC06), Tampa, FL, 11 to 17 November 2006. New York : ACM Press.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Cabaud, P. G., & Wroblewski, F. (1958). Colorimetric measurement of lactic dehydrogenase activity of body fluids. American Journal of Clinical Pathology, 30(3), 234–236. https://doi.org/10.1093/ajcp/30.3.234
  • Cohen, G., Dembiec, D., & Marcus, J. (1970). Measurement of catalase activity in tissue extracts. Analytical Biochemistry, 34(1), 30–38. https://doi.org/10.1016/0003-2697(70)90083-7
  • Costilla, M., Macri Delbono, R., Klecha, A., Cremaschi, G. A., & Barreiro Arcos, M. L. (2019). Oxidative Stress Produced by Hyperthyroidism Status Induces the Antioxidant Enzyme Transcription through the Activation of the NRF-2 Factor in Lymphoid Tissues of Balb/c Mice. Oxidative Medicine and Cellular Longevity, 2019, 7471890. https://doi.org/10.1155/2019/7471890
  • da Rosa Araujo, A. S., Silva de Miranda, M. F., de Oliveira, U. O., Fernandes, T., Llesuy, S., Rios Kucharski, L. C., Khaper, N., & Belló-Klein, A. (2010). Increased resistance to hydrogen peroxide-induced cardiac contracture is associated with decreased myocardial oxidative stress in hypothyroid rats. Cell Biochemistry and Function, 28(1), 38–44. https://doi.org/10.1002/cbf.1616
  • Das, K., Samanta, L., & Chainy, G. B. N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formation of superoxide radicals. Indian J Biochemistry and Biophysics, 37, 201–204.
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Garg, S., Khan, S.I., Malhotra, R.K., Sharma, M. K., Kumar, M., Kaur, P., Nag, T. C., RumaRay, Bhatia, J., & Arya, D. S. (2020). The molecular mechanism involved in cardioprotection by the dietary flavonoid fisetin as an agonist of PPAR-γ in a murine model of myocardial infarction. Archives of Biochemistry and Biophysics, 694, 108572. https://doi.org/10.1016/j.abb.2020.108572.E
  • Gupta, S. C., Sung, B., Kim, J. H., Prasad, S., Li, S., & Aggarwal, B. B. (2013). Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res, 57(9), 1510–1528. https://doi.org/10.1002/mnfr.201100741
  • Haglund, T. A., Rajasekaran, N. S., Smood, B., Giridharan, G. A., Hoopes, C. W., Holman, W. L., Mauchley, D. C., Prabhu, S. D., Pamboukian, S. V., Tallaj, J. A., Rajapreyar, I. N., Kirklin, J. K., & Sethu, P. (2019). Evaluation of flow-modulation approaches in ventricular assist devices using an in-vitro endothelial cell culture model. The Journal of Heart and Lung Transplantation : The Official Publication of the International Society for Heart Transplantation, 38(4), 456–465. https://doi.org/10.1016/j.healun.2018.10.007
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry : international Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 44 (2), 532–553. https://doi.org/10.1159/000485089
  • Hercberg, S., Galan, P., Preziosi, P., Alfarez, M. J., & Vazquez, C. (1998). The potential role antioxidant vitamins in preventing cardiovascular diseases and cancers. Nutrition (Burbank, Los Angeles County, Calif.), 14(6), 513–520. https://doi.org/10.1016/S0899-9007(98)00040-9
  • Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. The New England Journal of Medicine, 341(17), 1276–1283. https://doi.org/10.1056/NEJM199910213411706
  • Jorgensen, W. L., Maxwell, D.S. & Tirado-Rives, J. (1996). Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of American Chemical Society, 118, 11225–11236.
  • Kim, H. K., & Han, S. N. (2019). Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life, 71(4), 442–455. https://doi.org/10.1002/iub.2003
  • Kim, H. Y., & Mohan, S. (2013). Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development. Bone Research, 1(2), 146–161. https://doi.org/10.4248/BR201302004
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–213. https://doi.org/10.1093/nar/gkv951
  • Klein, I. (1990). Thyroid hormone and the cardiovascular system. The American Journal of Medicine, 88(6), 631–637. https://doi.org/10.1016/0002-9343(90)90531-H
  • Kumar, M., Dahiya, S., Sharma, P., Sharma, S., Singh, T.P., Kapil, A., & Kaur, P. (2015). Structure based in silico analysis of quinolone resistance in clinical isolates of Salmonella Typhi from India. PLoS One, 10(5), e0126560. https://doi.org/10.1371/journal.pone.0126560
  • Kuzman, J. A., O'Connell, T. D., & Gerdes, A. M. (2007). Rapamycin prevents Thyroid hormone-induced cardiac hypertrophy. Endocrinology, 148(7), 3477–3484. https://doi.org/10.1210/en.2007-0099
  • Li, H. L., Liu, C., de Couto, G., Ouzounian, M., Sun, M., Wang, A. B., Huang, Y., He, C. W., Shi, Y., Chen, X., Nghiem, M. P., Liu, Y., Chen, M., Dawood, F., Fukuoka, M., Maekawa, Y., Zhang, L., Leask, A., Ghosh, A. K., Kirshenbaum, L. A., & Liu, P. P. (2008). Curcumin prevents and reverses murine cardiac hypertrophy. Journal Clinical Investigations, 118, 879–893.
  • Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., Jin, Y., Xu, X., & Liang, G. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 59, 152774 https://doi.org/10.1016/j.phymed.2018.11.034
  • Li, D., Saldeen, T., & Mehta, J. L. (2000). Effects of alpha-tocopherol on ox-LDL-mediated degradation of IkappaB and apoptosis in cultured human coronary artery endothelial cells. J Cardiovasc Pharmacol, 36(3), 297–301. https://doi.org/10.1097/00005344-200009000-00003
  • Mishra, P., Paital, B., Jena, S., Swain, S. S., Kumar, S., Yadav, M. K., Chainy, G. B. N., & Samanta, L. (2019). Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Scientific Reports, 9 (1), 7408–7425. https://doi.org/10.1038/s41598-019-43320-5
  • Mishra, P., & Samanta, L. (2012). Oxidative stress and heart failure in altered thyroid states. TheScientificWorldJournal, 2012, 741861. https://doi.org/10.1100/2012/741861
  • Mohanty, D., & Samanta, L. (2016). Multivariate analysis of potential biomarkers of oxidative stress in Notopterus notopterus tissues from Mahanadi River as a function of concentration of heavy metals. Chemosphere, 155, 28–38. doi: 10.1016/2016.04.035.
  • Nafisi, S., Adelzadeh, M., Norouzi, Z., & Sarbolouki, M. N. (2009). Curcumin binding to DNA and RNA. DNA and Cell Biology, 28(4), 201–208. https://doi.org/10.1089/dna.2008.0840
  • Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The NRF-2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry, 284(20), 13291–13295. https://doi.org/10.1074/jbc.R900010200
  • Niture, S. K., Khatri, R., & Jaiswal, A. K. (2014). Regulation of Nrf2-an update. Free Radical Biology & Medicine, 66, 36–44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Annals of Biochemistry, 95, 352–358.
  • Paital, B. (2014). Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 184(1), 65–76. https://doi.org/10.1007/s00360-013-0778-8
  • Paital, B., & Chainy, G. B. N. (2010). Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 151(1), 142–151. https://doi.org/10.1016/j.cbpc.2009.09.007
  • Paital, B., & Chainy, G. B. N. (2012). Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 155(2), 228–237. https://doi.org/10.1016/j.cbpc.2011.08.009
  • Paital, B., & Chainy, G. B. N. (2013a). Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicology and Environmental Safety, 87, 33–41. https://doi.org/10.1016/j.ecoenv.2012.10.006
  • Paital, B., & Chainy, G. B. N. (2013b). Modulation of expression of SOD isoenzymes in mud crab (Scylla serrata): effects of inhibitors, salinity and season. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(1), 195–204. https://doi.org/10.3109/14756366.2011.645239
  • Paital, B., & Chainy, G. B. N. (2014). Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata. Journal of Thermal Biology, 41, 104–111. https://doi.org/10.1016/j.jtherbio.2014.02.013
  • Petrulea, M. S., Duncea, I., & Muresan, A. (2009). Thyroid hormones in excess induce oxidative stress in rats. Acta Endocrinologica (Bucharest), 5 (2), 155–164. https://doi.org/10.4183/aeb.2009.155
  • Sandra, V., Schäfer, A., & Parnham, M. J. (2017). The Master Regulator of Anti-Oxidative Responses. International Journal of Molecular Sciences., 18(12), 2772
  • Subudhi, U., Das, K., Paital, B., Bhanja, S., & Chainy, G. B. N. (2008). Alleviation of enhanced oxidative stress and oxygen consumption of L-thyroxine induced hyperthyroid rat liver mitochondria by vitamin E and curcumin . Chemico-Biological Interactions, 173(2), 105–114. https://doi.org/10.1016/j.cbi.2008.02.005
  • Subudhi, U., Das, K., Paital, B., Bhanja, S., & Chainy, G. B. N. (2009). Supplementation of curcumin and vitamin E enhances oxidative stress, but restores hepatic histoarchitecture in hypothyroid rats. Life Sciences, 84(11-12), 372–379. https://doi.org/10.1016/j.lfs.2008.12.024
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Sahoo, J., Chaitanya, S. V., Mahapatra, N., Hussain, T., & Padhy, R. N. (2018). Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy . Journal of Cellular Biochemistry, 119(12), 9838–9852. https://doi.org/10.1002/jcb.27304
  • Swain, S. S., Sahu, M. C., & Padhy, R. N. (2015). In silico attempt for adduct agent(s) against malaria: Combination of chloroquine with alkaloids of Adhatodavasica. Computer Methods and Programs in Biomedicine, 122(1), 16–65. https://doi.org/10.1016/j.cmpb.2015.06.005
  • van der Putten, H. H., Joosten, B. J., Klaren, P. H., & Everts, M. E. (2002). Uptake of tri-iodothyronine and thyroxine in myoblasts and myotubes of the embryonic heart cell line H9c2 (2-1). Journal of Endocrinology, 175 (3), 587–596. https://doi.org/10.1677/joe.0.1750587
  • Vineetha, R. C., Binu, P., Arathi, P., & Nair, R. H. (2018). L-Ascorbic acid and α-Tocopherol attenuate arsenic trioxide-induced toxicity in H9c2 cardiomyocytes by the activation of Nrf2 and Bcl2 transcription factors. Toxicology Mechanisms and Methods, 28(5), 353–360. https://doi.org/10.1080/15376516.2017.1422578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.