270
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Organotin (IV) complexes with sulphonyl hydrazide moiety. Design, synthesis, characterization, docking studies, cytotoxic and anti-leishmanial activity

ORCID Icon, , , , , , , , , & show all
Pages 12336-12346 | Received 04 Apr 2021, Accepted 16 Aug 2021, Published online: 30 Aug 2021

References

  • Aher, N. G., Pore, V. S., Mishra, N. N., Kumar, A., Shukla, P. K., Sharma, A., & Bhat, M. K. (2009). Synthesis and antifungal activity of 1, 2, 3-triazole containing fluconazole analogues. Bioorganic & Medicinal Chemistry Letters, 19(3), 759–763. https://doi.org/10.1016/j.bmcl.2008.12.026
  • Ahmad, S., Ullah, F., Ayaz, M., Sadiq, A., & Imran, M. (2015). Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: Potential effectiveness in oxidative stress and neurological disorders. Biological Research, 48(1), 20–28. https://doi.org/10.1186/s40659-015-0010-2
  • Ahmad, A., Ullah, F., Sadiq, A., Ayaz, M., Rahim, H., Rashid, U., Ahmad, S., Jan, M. S., Ullah, R., Shahat, A. A., & Mahmood, H. M. (2019). Pharmacological evaluation of aldehydic-pyrrolidinedione against HCT-116, MDA-MB231, NIH/3T3, MCF-7 cancer cell lines, antioxidant and enzyme inhibition studies. Drug Design, Development and Therapy, 13, 4185–4194. https://doi.org/10.2147/DDDT.S226080
  • Ahmad, A., Ullah, F., Sadiq, A., Ayaz, M., Saeed Jan, M., Shahid, M., Wadood, A., Mahmood, F., Rashid, U., Ullah, R., Sahibzada, M. U. K., Alqahtani, A. S., & Mahmood, H. M. (2020). Comparative cholinesterase, α-glucosidase inhibitory, antioxidant, molecular docking, and kinetic studies on potent succinimide derivatives. Drug Design, Development and Therapy, 14, 2165–2178. https://doi.org/10.2147/DDDT.S237420
  • Ali, M., Muhammad, S., Shah, M. R., Khan, A., Rashid, U., Farooq, U., Ullah, F., Sadiq, A., Ayaz, M., Ali, M., Ahmad, M., & Latif, A. (2017). Neurologically potent molecules from Crataegus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Frontiers in Pharmacology, 8, 327. https://doi.org/10.3389/fphar.2017.00327
  • Aloui, Z., Messaoud, C., Haoues, M., Neffati, N., Bassoumi Jamoussi, I., Essafi-Benkhadir, K., Boussaid, M., Guizani, I., & Karoui, H. (2016). Asteraceae Artemisia campestris and Artemisia herba-alba essential oils trigger apoptosis and cell cycle arrest in Leishmania infantum promastigotes. Evidence-Based Complementary and Alternative Medicine: eCAM, 2016, 9147096. https://doi.org/10.1155/2016/9147096
  • Alvar, J., Aparicio, P., Aseffa, A., Den Boer, M., Cañavate, C., Dedet, J.-P., Gradoni, L., Ter Horst, R., López-Vélez, R., & Moreno, J. (2008). The relationship between leishmaniasis and AIDS: The second 10 years. Clinical Microbiology Reviews, 21(2), 334–359. https://doi.org/10.1128/CMR.00061-07
  • Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Ovais, M., Ahmad, W., Ahmad, S., & Zeb, A. (2016). Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC Complementary and Alternative Medicine, 16(1), 502–514. https://doi.org/10.1186/s12906-016-1491-4
  • Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J., & Devkota, H. P. (2019). Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-Biological Interactions, 308, 294–303. https://doi.org/10.1016/j.cbi.2019.05.050
  • Badirzadeh, A., Heidari-Kharaji, M., Fallah-Omrani, V., Dabiri, H., Araghi, A., & Salimi Chirani, A. (2020). Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Neglected Tropical Diseases, 14(1), e0007843. https://doi.org/10.1371/journal.pntd.0007843
  • Borborema, S. E. T., Andrade Junior, H. F. d., Osso Junior, J. A., & Nascimento, N. d. (2005). In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate. Brazilian Archives of Biology and Technology, 48(spe2), 63–68. https://doi.org/10.1590/S1516-89132005000700009
  • Chai, Y., Yan, S., Wong, I. L., Chow, L. M., & Sun, H. (2005). Complexation of antimony (SbV) with guanosine 5′-monophosphate and guanosine 5′-diphospho-D-mannose: Formation of both mono-and bis-adducts. Journal of Inorganic Biochemistry, 99(12), 2257–2263. https://doi.org/10.1016/j.jinorgbio.2005.08.015
  • Chapman, L. A. C., Spencer, S. E. F., Pollington, T. M., Jewell, C. P., Mondal, D., Alvar, J., Hollingsworth, T. D., Cameron, M. M., Bern, C., & Medley, G. F. (2020). Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post–kala-azar dermal leishmaniasis. Proceedings of the National Academy of Sciences, 117(41), 25742–25750. https://doi.org/10.1073/pnas.2002731117
  • Croft, S. L., Seifert, K., & Yardley, V. (2006). Current scenario of drug development for leishmaniasis. The Indian Journal of Medical Research, 123(3), 399–410.
  • De Queiroz, A. C., Dias, T. d. L. M. F., Da Matta, C. B. B., Cavalcante Silva, L. H. A., de Araújo-Júnior, J. X., de Araújo, G. B., Moura, F. d. B. P., & Alexandre-Moreira, M. S. (2014). Antileishmanial activity of medicinal plants used in endemic areas in northeastern Brazil. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 478290. https://doi.org/10.1155/2014/478290
  • Desjeux, P. (2001). The increase in risk factors for leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95(3), 239–243. https://doi.org/10.1016/S0035-9203(01)90223-8
  • Du, J., Guo, J., Kang, D., Li, Z., Wang, G., Wu, J., Zhang, Z., Fang, H., Hou, X., Huang, Z., Li, G., Lu, X., Liu, X., Ouyang, L., Rao, L., Zhan, P., Zhang, X., & Zhang, Y. (2020). New techniques and strategies in drug discovery. Chinese Chemical Letters, 31(7), 1695–1708. https://doi.org/10.1016/j.cclet.2020.03.028
  • Furniss, B. S. (1989). Vogel's textbook of practical organic chemistry. Pearson Education India.
  • Hussain, F., Khan, Z., Jan, M. S., Ahmad, S., Ahmad, A., Rashid, U., Ullah, F., Ayaz, M., & Sadiq, A. (2019). Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorganic Chemistry, 91, 103128. https://doi.org/10.1016/j.bioorg.2019.103128
  • Jabeen, M., Ahmad, S., Shahid, K., Sadiq, A., & Rashid, U. (2018). Ursolic acid hydrazide based organometallic complexes: Synthesis, characterization, antibacterial, antioxidant, and docking studies. Frontiers in Chemistry, 6, 55. https://doi.org/10.3389/fchem.2018.00055
  • Jan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O-U-R., Ullah, F., Ayaz, M., & Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863. https://doi.org/10.1016/j.ejmech.2019.111863
  • Khan, E., Gul, Z., Shahzad, A., Jan, M. S., Ullah, F., Tahir, M., & Noor, A. (2017). Coordination compounds of 4, 5, 6, 7-tetrahydro-1 H-indazole with Cu (II), Co (II) and Ag (I): Structural, antimicrobial, antioxidant and enzyme inhibition studies. Journal of Coordination Chemistry, 70(24), 4054–4069. https://doi.org/10.1080/00958972.2017.1416356
  • Khan, A. M., Qureshi, R. A., Gillani, S. A., & Ullah, F. (2011). Antimicrobial activity of selected medicinal plants of Margalla Hills, Islamabad, Pakistan. Journal of Medicinal Plant Research, 5(18), 4665–4670.
  • Khan, K. M., Saify, Z. S., Khan, Z. A., Ahmed, M., Saeed, M., Schick, M., Kohlbau, H. J., & Voelter, W. (2000). Syntheses and cytotoxic, antimicrobial, antifungal and cardiovascular activity of new quinoline derivatives. Arzneimittel-Forschung, 50(10), 915–924. https://doi.org/10.1055/s-0031-1300313
  • Majid Shah, S., Ullah, F., Ayaz, M., Sadiq, A., Hussain, S., Ali Shah, A.-u.-H., Adnan Ali Shah, S., Wadood, A., & Nadhman, A. (2019). β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: Docking and molecular insights. Steroids, 148, 56–62. https://doi.org/10.1016/j.steroids.2019.05.001
  • Molina, R., Jiménez, M., García-Martínez, J., San Martín, J. V., Carrillo, E., Sánchez, C., Moreno, J., Alves, F., & Alvar, J. (2020). Role of asymptomatic and symptomatic humans as reservoirs of visceral leishmaniasis in a Mediterranean context. PLoS Neglected Tropical Diseases, 14(4), e0008253. https://doi.org/10.1371/journal.pntd.0008253
  • N’Guessan, B., Dosso, K., Gnangoran, B., Amoateng, P., Asiedu-Gyekye, I., & Yapo, A. (2015). Antibacterial and antispasmodic activities of a dichloromethane fraction of an ethanol extract of stem bark of Piliostigma reticulatum. Journal of Pharmacy and Bioallied Sciences, 7(2), 128. https://doi.org/10.4103/0975-7406.154439
  • Nederberg, F., Zhang, Y., Tan, J. P. K., Xu, K., Wang, H., Yang, C., Gao, S., Guo, X. D., Fukushima, K., Li, L., Hedrick, J. L., & Yang, Y.-Y. (2011). Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chemistry, 3(5), 409–414. https://doi.org/10.1038/nchem.1012
  • Ouakad, M., Bahi-Jaber, N., Chenik, M., Dellagi, K., & Louzir, H. (2007). Selection of endogenous reference genes for gene expression analysis in Leishmania major developmental stages. Parasitology Research, 101(2), 473–477. https://doi.org/10.1007/s00436-007-0491-1
  • Pitzer, K. K., Werbovetz, K. A., Brendle, J. J., & Scovill, J. P. (1998). Synthesis and biological evaluation of 4-chloro-3, 5-dinitrobenzotrifluoride analogues as antileishmanial agents. Journal of Medicinal Chemistry, 41(24), 4885–4889. https://doi.org/10.1021/jm9804073
  • Rogers, M. E. (2012). The role of leishmania proteophosphoglycans in sand fly transmission and infection of the Mammalian host. Frontiers in Microbiology, 3, 223. https://doi.org/10.3389/fmicb.2012.00223
  • Sabaa, H., Zghair, K., Mohammed, N., Musa, I., & Abd, R. (2016). The effect of Nd: YAG lasers on Leishmania donovani promastigotes. World Journal of Experimental Biosciences, 4, 25–28.
  • Santos, S. S., de Araújo, R. V., Giarolla, J., El Seoud, O., & Ferreira, E. I. (2020). Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: A review. International Journal of Antimicrobial Agents, 55(4), 105906. https://doi.org/10.1016/j.ijantimicag.2020.105906
  • Shah, N. A., Khan, M. R., & Nadhman, A. (2014). Antileishmanial, toxicity, and phytochemical evaluation of medicinal plants collected from Pakistan. BioMed Research International, 2014, 384204. https://doi.org/10.1155/2014/384204
  • Shahid, K., Shahzadi, S., & Ali, S. (2008). Spectroscopic studies of biologically active organotin (IV) derivatives of 2-[N-(2, 4, 6-tribromophenylamido] propanoic acid. Journal of the Iranian Chemical Society, 5(4), 579–587. https://doi.org/10.1007/BF03246137
  • Shahid, K., Shahzadi, S., Ali, S., & Mazhar, M. (2006). Synthesis, spectroscopic studies and biological applications of organotin (IV) derivatives of 3-[N-(4-nitrophenyl)-amido] propenoic acid and 3-[N-(4-nitrophenyl)-amido] propanoic acid. Bulletin-Korean Chemical Society, 27(1), 44.
  • Shahzadi, S., Shahid, K., Ali, S., & Bakhtiar, M. (2008). Characterization and antimicrobial activity of organotin (IV) complexes of 2-[(2, 6-diethylphenylamido)] benzoates and 3-[(2, 6-diethylphenylamido)] propanoates. Turkish Journal of Chemistry, 32(3), 333–353.
  • Sirajuddin, M., Ali, S., McKee, V., Sohail, M., & Pasha, H. (2014). Potentially bioactive organotin(IV) compounds: Synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. European Journal of Medicinal Chemistry, 84, 343–363. https://doi.org/10.1016/j.ejmech.2014.07.028
  • Sirajuddin, M., McKee, V., Tariq, M., & Ali, S. (2018). Newly designed organotin(IV) carboxylates with peptide linkage: Synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations. European Journal of Medicinal Chemistry, 143, 1903–1918. https://doi.org/10.1016/j.ejmech.2017.11.001
  • Sundar, S., Jha, T. K., Thakur, C. P., Engel, J., Sindermann, H., Fischer, C., Junge, K., Bryceson, A., & Berman, J. (2002). Oral miltefosine for Indian visceral leishmaniasis. The New England Journal of Medicine, 347(22), 1739–1746. https://doi.org/10.1056/NEJMoa021556
  • Ullah, F., Iqbal, N., Ayaz, M., Sadiq, A., Ullah, I., Ahmad, S., & Imran, M. (2017). DPPH, ABTS free radical scavenging, antibacterial and phytochemical evaluation of crude methanolic extract and subsequent fractions of Chenopodium botrys aerial parts. Pakistan Journal of Pharmaceutical Sciences, 30(3), 761–766.
  • Wojtunik-Kulesza, K. A., Oniszczuk, A., Oniszczuk, T., & Waksmundzka-Hajnos, M. (2016). The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomedicine & Pharmacotherapy, 78, 39–49. https://doi.org/10.1016/j.biopha.2015.12.024
  • Yasinzai, M., Khan, M., Nadhman, A., & Shahnaz, G. (2013). Drug resistance in leishmaniasis: Current drug-delivery systems and future perspectives. Future Medicinal Chemistry, 5(15), 1877–1888. https://doi.org/10.4155/fmc.13.143
  • Zafar, R., Zubair, M., Ali, S., Shahid, K., Waseem, W., Naureen, H., Haider, A., Jan, M. S., Ullah, F., Sirajuddin, M., & Sadiq, A. (2021). Zinc metal carboxylates as potential anti-Alzheimer's candidate: In vitro anticholinesterase, antioxidant and molecular docking studies. Journal of Biomolecular Structure & Dynamics, 39(3), 1044–1054. https://doi.org/10.1080/07391102.2020.1724569
  • Zhu, H. (2020). Big data and artificial intelligence modeling for drug discovery. Annual Review of Pharmacology and Toxicology, 60, 573–589. https://doi.org/10.1146/annurev-pharmtox-010919-023324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.