404
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

In silico and in vitro evaluation of efflux pumps inhibition of α,β-amyrin

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 12785-12799 | Received 24 May 2021, Accepted 29 Aug 2021, Published online: 16 Sep 2021

References

  • Agus, H. H. (2021). Chapter 4 – Terpene toxicity and oxidative stress. In: Patel, V. B., & Preedy, V. R. (Eds), Toxicology (pp 33–42). Academic Press.
  • Akanbi, O. E., Njom, H. A., Fri, J., Otigbu, A. C., & Clarke, A. M. (2017). Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in eastern cape province of South Africa. International Journal of Environmental Research and Public Health, 14(9). https://doi.org/10.3390/ijerph14091001
  • Almeida, R. S., Freitas, P. R., Araújo, A. C. J., Alencar Menezes, I. R., Santos, E. L., Tintino, S. R., Moura, T. F., Filho, J. R., Ferreira, V. A., Silva, A. C. A., Silva, L. E., do Amaral, W., Deschamps, C., Iriti, M., & Melo Coutinho, H. D. (2020). GC-MS profile and enhancement of antibiotic activity by the essential oil of Ocotea odorífera and Safrole: Inhibition of Staphylococcus aureus efflux pumps. Antibiotics, 9(5), 247. https://doi.org/10.3390/antibiotics9050247
  • Ashu, F. A., Na-Iya, J., Wamba, B. E. N., Kamga, J., Nayim, P., Ngameni, B., Beng, V. P., Ngadjui, B. T., & Kuete, V. (2020). Antistaphylococcal activity of extracts, fractions, and compounds of Acacia polyacantha Wild (Fabaceae). Evidence-Based Complementary and Alternative Medicine : eCAM, 2020, 2654247 https://doi.org/10.1155/2020/2654247
  • Astolfi, A., Felicetti, T., Iraci, N., Manfroni, G., Massari, S., Pietrella, D., Tabarrini, O., Kaatz, G. W., Barreca, M. L., Sabatini, S., & Cecchetti, V. (2017). Pharmacophore-based repositioning of approved drugs as novel Staphylococcus aureus NorA efflux pump inhibitors. Journal of Medicinal Chemistry, 60(4), 1598–1604. https://doi.org/10.1021/acs.jmedchem.6b01439
  • Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J., & Devkota, H. P. (2019). Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-Biological Interactions, 308, 294–303. https://doi.org/10.1016/j.cbi.2019.05.050
  • Bandeira, P. N., Lemos, T. L. G., Costa, S. M. O., & Santos, H. S. D. (2007). Obtenção de derivados da mistura triterpenoídica alfa- e beta-amirina. Revista Brasileira de Farmacognosia, 17(2), 204–208. https://doi.org/10.1590/S0102-695X2007000200012
  • Banerjee, A., Majumder, P., Sanyal, S., Singh, J., Jana, K., Das, C., & Dasgupta, D. (2014). The DNA intercalators ethidium bromide and propidium iodide also bind to core histones. FEBS Open Bio, 4(1), 251–259. https://doi.org/10.1016/j.fob.2014.02.006
  • Bateman, A. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515. https://doi.org/10.1093/nar/gky1049
  • Belaidi, S., Youcef, O., Salah, T., & Lanez, T. (2015). In silico approach for conformational analysis, drug-likeness properties and structure activity relationships of 12-membered macrolides. Journal of Computational and Theoretical Nanoscience, 12(11), 4855–4861. https://doi.org/10.1166/jctn.2015.4451
  • Bhimaneni, S. P., Bhati, V., Bhosale, S., & Kumar, A. (2021). Investigates interaction between abscisic acid and bovine serum albumin using various spectroscopic and in-silico techniques. Journal of Molecular Structure, 1224, 129018. https://doi.org/10.1016/j.molstruc.2020.129018
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • Biovia, D. S. (2017). Discovery studio visualizer. Dassault Systemes, BIOVIA Corp.
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Cardoso, A. R., Carneiro, L. P. T., Cabral-Miranda, G., Bachmann, M. F., & Sales, M. G. F. (2021). Employing bacteria machinery for antibiotic detection: Using DNA gyrase for ciprofloxacin detection. Chemical Engineering Journal, 409, 128135. https://doi.org/10.1016/j.cej.2020.128135
  • Chung, P. Y., Navaratnam, P., & Chung, L. Y. (2011). Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Annals of Clinical Microbiology and Antimicrobials, 10(1), 25. https://doi.org/10.1186/1476-0711-10-25
  • CLSI. (2019). CLSI M100-ED29:2019. Performance standards for antimicrobial susceptibility testing 29th Edition.
  • Coutinho, H. D. M., Costa, J. G. M., Lima, E. O., Falcão-Silva, V. S., & Siqueira-Júnior, J. P. (2008). Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy, 54(4), 328–330. https://doi.org/10.1159/000151267
  • Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., & Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews, 26(4), 822–880. https://doi.org/10.1128/CMR.00022-13
  • Csizmadia, P. (1999). MarvinSketch and MarvinView: Molecule applets for the World Wide Web [Paper presentation]. https://doi.org/10.3390/ecsoc-3-01775
  • da Silva, W. M. B., de Oliveira Pinheiro, S., Alves, D. R., de Menezes, J. E. S. A., Magalhães, F. E. A., Silva, F. C. O., Silva, J., Marinho, E. S., & de Morais, S. M. (2020). Synthesis of quercetin-metal complexes, in vitro and in silico anticholinesterase and antioxidant evaluation, and in vivo toxicological and anxiolitic activities. Neurotoxicity Research, 37(4), 893–903. https://doi.org/10.1007/s12640-019-00142-7
  • de Sousa Andrade, L. M., de Oliveira, A. B. M., Leal, A. L. A. B., de Alcântara Oliveira, F. A., Portela, A. L., de Sousa Lima Neto, J., de Siqueira-Júnior, J. P., Kaatz, G. W., da Rocha, C. Q., & Barreto, H. M. (2020). Antimicrobial activity and inhibition of the NorA efflux pump of Staphylococcus aureus by extract and isolated compounds from Arrabidaea brachypoda. Microbial Pathogenesis, 140, 103935. https://doi.org/10.1016/j.micpath.2019.103935
  • Denamur, E., Clermont, O., Bonacorsi, S., & Gordon, D. (2021). The population genetics of pathogenic Escherichia coli. Nature Reviews Microbiology, 19(1), 37–54. https://doi.org/10.1038/s41579-020-0416-x
  • dos Santos Barbosa, C. R., Scherf, J. R., de Freitas, T. S., de Menezes, I. R. A., Pereira, R. L. S., dos Santos, J. F. S., de Jesus, S. S. P., Lopes, T. P., de Sousa Silveira, Z., de Morais Oliveira-Tintino, C. D., Júnior, J. P. S., Coutinho, H. D. M., Tintino, S. R., & da Cunha, F. A. B. (2021). Effect of carvacrol and thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. Journal of Bioenergetics and Biomembranes, 53, 489–498. https://doi.org/10.1007/s10863-021-09906-3
  • Dwivedi, G. R., Tyagi, R., Sanchita, Tripathi, S., Pati, S., Srivastava, S. K., Darokar, M. P., & Sharma, A. (2018). Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. Journal of Biomolecular Structure and Dynamics, 36(16), 4270–4284. https://doi.org/10.1080/07391102.2017.1413424
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6 < 490::AID-JCC1 > 3.0.CO;2-P
  • Hamza, M., Nadir, M., Mehmood, N., & Farooq, A. (2016). In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains. Indian Journal of Pharmacology, 48(6), 710–714. https://doi.org/10.4103/0253-7613.194851
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17 https://doi.org/10.1186/1758-2946-4-17
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using autodock 4 and AutoDock vina with autodocktools: A tutorial 2012.
  • Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., DeCrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872–4875. https://doi.org/10.1016/j.bmcl.2008.07.071
  • Ivanenkov, Y. A., Zagribelnyy, B. A., & Aladinskiy, V. A. (2019). Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? Journal of Medicinal Chemistry, 62(22), 10026–10043. https://doi.org/10.1021/acs.jmedchem.9b00004
  • Jhanji, R., Bhati, V., Singh, A., & Kumar, A. (2020). Phytomolecules against bacterial biofilm and efflux pump: An in silico and in vitro study. Journal of Biomolecular Structure and Dynamics, 38(18), 5500–5512. https://doi.org/10.1080/07391102.2019.1704884
  • Jiang, D., Zhao, Y., Wang, X., Fan, J., Heng, J., Liu, X., Feng, W., Kang, X., Huang, B., Liu, J., & Zhang, X. C. (2013). Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14664–14669. https://doi.org/10.1073/pnas.1308127110
  • Johnson, T. W., Dress, K. R., & Edwards, M. (2009). Using the Golden Triangle to optimize clearance and oral absorption. Bioorganic & Medicinal Chemistry Letters, 19(19), 5560–5564. https://doi.org/10.1016/j.bmcl.2009.08.045
  • Kaatz, G. W., McAleese, F., & Seo, S. M. (2005). Multidrug Resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrobial Agents and Chemotherapy, 49(5), 1857–1864. https://doi.org/10.1128/AAC.49.5.1857-1864.2005
  • Kadurugamuwa, J. L., Clarke, A. J., & Beveridge, T. J. (1993). Surface action of gentamicin on Pseudomonas aeruginosa. Journal of Bacteriology, 175(18), 5798–5805. https://doi.org/10.1128/jb.175.18.5798-5805.1993
  • Kant, K., Rawat, R., Bhati, V., Bhosale, S., Sharma, D., Banerjee, S., & Kumar, A. (2021). Computational identification of natural product leads that inhibit mast cell chymase: An exclusive plausible treatment for Japanese encephalitis. Journal of Biomolecular Structure & Dynamics, 39(4), 1203–1212. https://doi.org/10.1080/07391102.2020.1726820
  • Kern, W. V., & Rieg, S. (2020). Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 26(2), 151–157. https://doi.org/10.1016/j.cmi.2019.10.031
  • Kuroda, T., & Tsuchiya, T. (2009). Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta, 1794(5), 763–768. https://doi.org/10.1016/j.bbapap.2008.11.012
  • Lagunin, A. A., Zakharov, A. V., Filimonov, D. A., & Poroikov, V. V. (2007). A new approach to QSAR modelling of acute toxicity. SAR and QSAR in Environmental Research, 18(3-4), 285–298. https://doi.org/10.1080/10629360701304253
  • Lagunin, A., Zakharov, A., Filimonov, D., & Poroikov, V. (2011). QSAR modelling of rat acute toxicity on the basis of PASS prediction. Molecular Informatics, 30(2-3), 241–250. https://doi.org/10.1002/minf.201000151
  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020–00018. https://doi.org/10.1128/CMR.00020-18
  • Lima, V. N., Oliveira-Tintino, C. D. M., Santos, E. S., Morais, L. P., Tintino, S. R., Freitas, T. S., Geraldo, Y. S., Pereira, R. L. S., Cruz, R. P., Menezes, I. R. A., & Coutinho, H. D. M. (2016). Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis, 99, 56–61. https://doi.org/10.1016/j.micpath.2016.08.004
  • Rao, M. S. P., Dipin, K. M., Kumar, S., Nayak, B. B., & Varela, M. F. (2018). Antimicrobial compounds of plant origin as efflux pump inhibitors: New avenues for controlling multidrug resistant pathogens. Journal of Antimicrobial Agents, 4(1). https://doi.org/10.4172/2472-1212.1000159
  • Mahato, S. B., & Kundu, A. P. (1994). 13C NMR Spectra of pentacyclic triterpenoids—A compilation and some salient features. Phytochemistry, 37(6), 1517–1575. https://doi.org/10.1016/S0031-9422(00)89569-2
  • Mahizan, N. A., Yang, S.-K., Moo, C.-L., Song, A. A.-L., Chong, C.-M., Chong, C.-W., Abushelaibi, A., Lim, S.-H. E., & Lai, K.-S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 24(14), 2631. https://doi.org/10.3390/molecules24142631
  • Mallavadhani, U. V., Mahapatra, A., Jamil, K., & Reddy, P. S. (2004). Antimicrobial activity of some pentacyclic triterpenes and their synthesized 3-O-lipophilic chains. Biological & Pharmaceutical Bulletin, 27(10), 1576–1579. https://doi.org/10.1248/bpb.27.1576
  • Marinho, E. M., Batista de Andrade Neto, J., Silva, J., Rocha da Silva, C., Cavalcanti, B. C., Marinho, E. S., & Nobre Júnior, H. V. (2020). Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microbial Pathogenesis, 148, 104365 https://doi.org/10.1016/j.micpath.2020.104365
  • McAleese, F., Petersen, P., Ruzin, A., Dunman, P. M., Murphy, E., Projan, S. J., & Bradford, P. A. (2005). A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrobial Agents and Chemotherapy, 49(5), 1865–1871. https://doi.org/10.1128/AAC.49.5.1865-1871.2005
  • Meenakshi, G., Ruchika, S., & Anoop, K. (2020). Docking techniques in toxicology: An overview. Current Bioinformatics, 15(6), 600–610. https://doi.org/10.2174/1574893614666191003125540
  • Melkemi, N., & Belaidi, S. (2014). Structure-property relationships and quantitative structure-activity relationship modeling of detoxication properties of some 1,2-dithiole-3-thione derivatives. Journal of Computational and Theoretical Nanoscience, 11(3), 801–806. https://doi.org/10.1166/jctn.2014.3431
  • Meza, J. C. (2010). Steepest descent. WIREs Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Navyashree, V., Kant, K., & Kumar, A. (2021). Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(4), 1404–1416. https://doi.org/10.1080/07391102.2020.1731603
  • Neyfakh, A. A., Borsch, C. M., & Kaatz, G. W. (1993). Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrobial Agents and Chemotherapy, 37(1), 128–129. https://doi.org/10.1128/AAC.37.1.128
  • Nidhi, S., Arti, S., Ruchika, S., & Anoop, K. (2020). Repurposing of auranofin against bacterial infections: An in-silico and in-vitro study. Current Computer-Aided Drug Design, 16, 1–15. https://doi.org/10.2174/1386207323666200717155640
  • Nogueira, A. O., Oliveira, Y. I. S., Adjafre, B. L., de Moraes, M. E. A., & Aragão, G. F. (2019). Pharmacological effects of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum: A literature review. Fundamental & Clinical Pharmacology, 33(1), 4–12. https://doi.org/10.1111/fcp.12402
  • O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance.
  • Onita, T., Ikawa, K., Nakamura, K., Nishikawa, G., Kobayashi, I., Ishihara, N., Tamaki, H., Yano, T., Naora, K., & Morikawa, N. (2021). Prostatic pharmacokinetic/pharmacodynamic evaluation of ampicillin-sulbactam for bacterial prostatitis and preoperative prophylaxis. Journal of Clinical Pharmacology, 61(6), 820–831. https://doi.org/10.1002/jcph.1800
  • Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55(5), 315–327. https://doi.org/10.1007/s00005-007-0039-1
  • Pasqua, M., Grossi, M., Zennaro, A., Fanelli, G., Micheli, G., Barras, F., Colonna, B., & Prosseda, G. (2019). The varied role of efflux pumps of the MFS family in the interplay of bacteria with animal and plant cells. Microorganisms, 7(9), 285. https://doi.org/10.3390/microorganisms7090285
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Kaminskas, L. M., & Ascher, D. B. (2018). Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. In: Gore, M., & Jagtap, U. B. (Eds.), Computational drug discovery and design (pp 271–284). Springer.
  • Radchenko, M., Symersky, J., Nie, R., & Lu, M. (2015). Structural basis for the blockade of MATE multidrug efflux pumps. Nature Communications, 6(1), 7995. https://doi.org/10.1038/ncomms8995
  • Reddy, P. N., Srirama, K., & Dirisala, V. R. (2017). An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infectious Diseases, 10, 1179916117703999 https://doi.org/10.1177/1179916117703999
  • Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2011). HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173–175. https://doi.org/10.1038/nmeth.1818
  • Ritika, R., Ruchika, S., & Anoop, K. (2019). Repurposing of fluvastatin against Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy: An in silico and in vitro study. Current Molecular Medicine, 19(7), 506–524. https://doi.org/10.2174/1566524019666190520094644
  • Roy, S. K., Kumari, N., Pahwa, S., Agrahari, U. C., Bhutani, K. K., Jachak, S. M., & Nandanwar, H. (2013). NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia, 90, 140–150. https://doi.org/10.1016/j.fitote.2013.07.015
  • Rüdiger, A. L., & Veiga-Junior, V. F. (2013). Chemodiversity of ursane- and oleanane-type triterpenes in Amazonian burseraceae oleoresins. Chemistry & Biodiversity, 10(6), 1142–1153. https://doi.org/10.1002/cbdv.201200315
  • Schindler, B. D., Jacinto, P., & Kaatz, G. W. (2013). Inhibition of drug efflux pumps in Staphylococcus aureus: Current status of potentiating existing antibiotics. Future Microbiology, 8(4), 491–507. https://doi.org/10.2217/fmb.13.16
  • Schindler, B. D., & Kaatz, G. W. (2016). Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat, 27, 1–13. https://doi.org/10.1016/j.drup.2016.04.003
  • Segall, M. D., & Champness, E. J. (2014). Multiparameter optimization of ADMET for drug design. In Predictive ADMET: Integrative Approaches in Drug Discovery and Development, 145-166. https://doi.org/10.1002/9781118783344.ch8
  • Shityakov, S., & Foerster, C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry, 7, 23-36. https://doi.org/10.2147/aabc.s63749
  • Shriram, V., Khare, T., Bhagwat, R., Shukla, R., & Kumar, V. (2018). Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Frontiers in Microbiology, 9, 2990. https://doi.org/10.3389/fmicb.2018.02990
  • Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201–222. https://doi.org/10.1128/mr.59.2.201-222.1995
  • Singh, B., & Singh, S. (2003). Antimicrobial activity of terpenoids from Trichodesma amplexicaule Roth. Phytotherapy Research: PTR, 17(7), 814–816. https://doi.org/10.1002/ptr.1202
  • Siqueira, M. M. R., Freire, P. T. C., Cruz, B. G., de Freitas, T. S., Bandeira, P. N., Silva dos Santos, H., Nogueira, C. E. S., Teixeira, A. M. R., Pereira, R. L. S., Xavier, J. C., Campina, F. F., dos Santos Barbosa, C. R., Neto, JBdA., da Silva, M. M. C., Siqueira-Júnior, J. P., & Douglas Melo Coutinho, H. (2021). Aminophenyl chalcones potentiating antibiotic activity and inhibiting bacterial efflux pump. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 158, 105695. https://doi.org/10.1016/j.ejps.2020.105695
  • Smith, E. C. J., Williamson, E. M., Wareham, N., Kaatz, G. W., & Gibbons, S. (2007). Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry, 68(2), 210–217. https://doi.org/10.1016/j.phytochem.2006.10.001
  • Stavri, M., Piddock, L. J. V., & Gibbons, S. (2007). Bacterial efflux pump inhibitors from natural sources. Journal of Antimicrobial Chemotherapy, 59(6), 1247–1260. https://doi.org/10.1093/jac/dkl460
  • Tamadonfar, K. O., Omattage, N. S., Spaulding, C. N., & Hultgren, S. J. (2019). Reaching the end of the line: Urinary tract infections. In: Bacteria and intracellularity. American Society of Microbiology.
  • Tintino, S. R. (2018). Avaliação da inibição de bombas de efluxos em linhagens de Staphylococcus aureus por substâncias sintéticas de origem natural. Universidade Federal de Pernambuco – Tese de Doutorado – Rede Nordeste de Biotecnologia – RENORBIO.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiological Reviews, 56(3), 395–411. https://doi.org/10.1128/mr.56.3.395-411.1992
  • Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., Hernandez, A. J., Parvathi, A., & Kumar, S. H. (2021). Bacterial resistance to antimicrobial agents. Antibiotics, 10(5), 593. https://doi.org/10.3390/antibiotics10050593
  • Vipin Madhavan, T. P., & Sakellaris, H. (2015). Chapter five—Colonization factors of enterotoxigenic Escherichia coli. In S. Sariaslani & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 90, pp 155–197). Academic Press.
  • Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2010). Moving beyond rules: The development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chemical Neuroscience, 1(6), 435–449. https://doi.org/10.1021/cn100008c
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Watkins, R. R., & Bonomo, R. A. (2016). Overview: Global and local impact of antibiotic resistance. Infectious Disease Clinics of North America, 30(2), 313–322. https://doi.org/10.1016/j.idc.2016.02.001
  • World Health Organization. (2011). The burden of health care-associated infection worldwide. Infection Prevention and Control.
  • Wu, P., Tu, B., Liang, J., Guo, S., Cao, N., Chen, S., Luo, Z., Li, J., Zheng, W., Tang, X., Li, D., Xu, X., Liu, W., Zheng, X., Sheng, Z., Roberts, A. P., Zhang, K., & Hong, W. D. (2021). Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. Bioorganic Chemistry, 109, 104692 https://doi.org/10.1016/j.bioorg.2021.104692
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yoshida, H., Bogaki, M., Nakamura, S., Ubukata, K., & Konno, M. (1990). Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. Journal of Bacteriology, 172(12), 6942–6949. https://doi.org/10.1128/jb.172.12.6942-6949.1990
  • Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411–1422. https://doi.org/10.1021/ci800084x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.