167
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Interaction of the renin inhibitor aliskiren with the SARS-CoV-2 main protease: a molecular docking study

& ORCID Icon
Pages 12714-12722 | Received 04 Apr 2021, Accepted 27 Aug 2021, Published online: 13 Sep 2021

References

  • Absalan, A., Doroud, D., Salehi-Vaziri, M., Kaghazian, H., Ahmadi, N., Zali, F., Pouriavali's, M. H., & Mousavi-Nasab, S. D. (2020). Computation screening and molecular docking of FDA approved viral protease inhibitors as a potential drug against COVID-19. Gastroenterology and Hepatology from Bed to Bench, 13(4), 355–360.
  • Alavian, G., Kolahdouzan, K., Mortezazadeh, M., & Torabi, Z. S. (2021). Antiretrovirals for prophylaxis against COVID-19: A comprehensive literature review. Journal of Clinical Pharmacology, 61(5), 581–590. https://doi.org/10.1002/jcph.1788
  • Alshahrani, S. (2020). Aliskiren - A promising antioxidant agent beyond hypertension reduction. Chemico-Biological Interactions, 326, 109145. https://doi.org/10.1016/j.cbi.2020.109145
  • Altarejo Marin, T., Machado Bertassoli, B., Alves de Siqueira de Carvalho, A., & Feder, D. (2020). The use of aliskiren as an antifibrotic drug in experimental models: A systematic review. Drug Development Research, 81(1), 114–126. https://doi.org/10.1002/ddr.21610
  • Andrianov, A. M., Kornoushenko, Y. V., Karpenko, A. D., Bosko, I. P., & Tuzikov, A. V. (2021). Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease. Journal of Biomolecular Structure & Dynamics, 39(15), 5779–5791. https://doi.org/10.1080/07391102.2020.1792989
  • Angeli, F., Reboldi, G., Mazzotta, G., Poltronieri, C., & Verdecchia, P. (2012). Safety and efficacy of aliskiren in the treatment of hypertension: A systematic overview. Expert Opinion on Drug Safety, 11(4), 659–670. https://doi.org/10.1517/14740338.2012.696608
  • Balasubramaniam, M., & Reis, R. J. S. (2020). Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv: The Preprint Server for Chemistry. https://doi.org/10.26434/chemrxiv.12084822
  • Bello, M., Martínez-Muñoz, A., & Balbuena-Rebolledo, I. (2020). Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Journal of Molecular Modeling, 26(12), 340. https://doi.org/10.1007/s00894-020-04600-4
  • Bhat, Z. A., Chitara, D., Iqbal, J., Sanjeev, B. S., & Madhumalar, A. (2021). Targeting allosteric pockets of SARS-CoV-2 main protease Mpro). Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2021.1891141 Online ahead of print.
  • Chen, Y. W., Yiu, C. B., & Wong, K. Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • Chtita, S., Belhassan, A., Aouidate, A., Belaidi, S., Bouachrine, M., & Lakhlifi, T. (2021). Discovery of potent SARS-CoV-2 inhibitors from approved antiviral drugs via docking and virtual screening. Combinatorial Chemistry & High Throughput Screening, 24(3), 441–454. https://doi.org/10.2174/1386207323999200730205447
  • Coto, E., Avanzas, P., & Gómez, J. (2021). The renin-angiotensin-aldosterone system and coronavirus disease 2019. European Cardiology, 16, e07. https://doi.org/10.15420/ecr.2020.30
  • Dallocchio, R. N., Dessì, A., De Vito, A., Delogu, G., Serra, P. A., & Madeddu, G. (2021). Early combination treatment with existing HIV antivirals: An effective treatment for COVID-19? European Review for Medical and Pharmacological Sciences, 25(5), 2435–2448. https://doi.org/10.26355/eurrev_202103_25285
  • Daoud, S., Alabed, S. J., & Dahabiyeh, L. A. (2021). Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies. Acta Pharmaceutica (Zagreb, Croatia), 71(2), 163–174. https://doi.org/10.2478/acph-2021-0016
  • De Luca, G., Cercek, M., Okkels Jensen, L., Bushljetikj, O., Calmac, L., Johnson, T., Gracida Blancas, M., Ganyukov, V., Wojakowski, W., von Birgelen, C., IJsselmuiden, A., Tuccillo, B., Versaci, F., Ten Berg, J., Laine, M., Berkout, T., Casella, G., Kala, P., López Ledesma, B., … Verdoia, M. (2021). Impact of renin-angiotensin system inhibitors on mortality during the COVID Pandemic among STEMI patients undergoing mechanical reperfusion: Insight from an international STEMI registry. Biomedicine & Pharmacotherapy, 138, 111469. https://doi.org/10.1016/j.biopha.2021.111469
  • De Meyer, S., Bojkova, D., Cinatl, J., Van Damme, E., Buyck, C., Van Loock, M., Woodfall, B., & Ciesek, S. (2020). Lack of antiviral activity of darunavir against SARS-CoV-2. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 97, 7–10. https://doi.org/10.1016/j.ijid.2020.05.085
  • Ding, W., Li, X., Wu, W., He, H., Li, Y., Gao, L., Gan, L., Wang, M., Ou, S., & Liu, J. (2018). [Aliskiren inhibits angiotensin II/angiotensin 1-7(Ang II/Ang1-7) signal pathway in rats with diabetic nephropathy]. Xi Bao yu Fen zi Mian yi Xue za Zhi = Chinese Journal of Cellular and Molecular Immunology, 34(10), 891–895.
  • Douangamath, A., Fearon, D., Gehrtz, P., Krojer, T., Lukacik, P., Owen, C. D., Resnick, E., Strain-Damerell, C., Aimon, A., Ábrányi-Balogh, P., Brandão-Neto, J., Carbery, A., Davison, G., Dias, A., Downes, T. D., Dunnett, L., Fairhead, M., Firth, J. D., Jones, S. P., … Walsh, M. A. (2020). Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nature Communications, 11(1), 5047. https://doi.org/10.1038/s41467-020-18709-w
  • Essam, M., Barakat, N., Elkashef, A., Awadalla, A., Behery, A. E., & Abdel-Maboud, M. (2021). Functional and molecular evaluation of using aliskiren during acute and chronic partial ureteral obstruction in rat solitary kidney. Life Sciences, 265, 118811. https://doi.org/10.1016/j.lfs.2020.118811
  • Fu, L., Ye, F., Feng, Y., Yu, F., Wang, Q., Wu, Y., Zhao, C., Sun, H., Huang, B., Niu, P., Song, H., Shi, Y., Li, X., Tan, W., Qi, J., & Gao, G. F. (2020). Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature Communications, 11(1), 4417. https://doi.org/10.1038/s41467-020-18233-x
  • Grahl, M. V. C., Alcará, A. M., Perin, A. P. A., Moro, C. F., Pinto, É. S. M., Feltes, B. C., Ghilardi, I. M., Rodrigues, F. V. F., Dorn, M., da Costa, J. C., Norberto de Souza, O., & Ligabue-Braun, R. (2021). Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. Informatics in Medicine Unlocked, 23, 100539. https://doi.org/10.1016/j.imu.2021.100539
  • Gressens, S. B., Leftheriotis, G., Dussaule, J. C., Flamant, M., Levy, B. I., & Vidal-Petiot, E. (2021). Controversial roles of the renin angiotensin system and its modulators during the COVID-19 pandemic. Frontiers in Physiology, 12(624052), 624052.
  • Guo, Y., Zeng, J., Li, Q., Li, P., Luo, F. M., Zhang, W. Z., Lu, Y. X., Wang, Q., Zhang, W., Zeng, Z. P., & Liu, L. S. [ (2020). Preliminary clinical study of direct renin inhibitor aliskiren in the treatment of severe COVID-19 patients with hypertension. Zhonghua Nei Ke Za Zhi, 59(0), E011.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Homans, S. W. (1990). A molecular mechanical force field for the conformational analysis of oligosaccharides: Comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry, 29(39), 9110–9118. https://doi.org/10.1021/bi00491a003
  • Hosseini, F. S., & Amanlou, M. (2020). Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sciences, 258, 118205. https://doi.org/10.1016/j.lfs.2020.118205
  • Indu, P., Rameshkumar, M. R., Arunagirinathan, N., Al-Dhabi, N. A., Valan Arasu, M., & Ignacimuthu, S. (2020). Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach. Journal of Infection and Public Health, 13(12), 1856–1861. https://doi.org/10.1016/j.jiph.2020.10.015
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Jorgensen, W. L., & Tirado-Rives, J. (1996). Monte Carlo versus Molecular Dynamics for conformational sampling. The Journal of Physical Chemistry, 100(34), 14508–14513. https://doi.org/10.1021/jp960880x
  • Jorgensen, W. L., & Tirado-Rives, J. (2005). Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. Journal of Computational Chemistry, 26(16), 1689–1700. https://doi.org/10.1002/jcc.20297
  • Jorgensen, W. L., Ulmschneider, J. P., & Tirado-Rives, J. (2004). Free energies of hydration from a generalized Born model and an ALL-atom force field. The Journal of Physical Chemistry B, 108(41), 16264–16270. https://doi.org/10.1021/jp0484579
  • Kumar, D., Chauhan, G., Kalra, S., Kumar, B., & Gill, M. S. (2020). A perspective on potential target proteins of COVID-19: Comparison with SARS-CoV for designing new small molecules. Bioorganic Chemistry, 104, 104326. https://doi.org/10.1016/j.bioorg.2020.104326
  • Lagant, P., Nolde, D., Stote, R., Vergoten, G., & Karplus, M. (2004). Increasing normal modes analysis accuracy: The SPASIBA spectroscopic force field introduced into the CHARMM program. The Journal of Physical Chemistry A, 108(18), 4019–4029. https://doi.org/10.1021/jp031178l
  • Meziane-Tani, M., Lagant, P., Semmoud, A., & Vergoten, G. (2006). The SPASIBA force field for chondroitin sulfate: Vibrational analysis of D-glucuronic and N-acetyl-D-galactosamine 4-sulfate sodium salts. The Journal of Physical Chemistry A, 110(39), 11359–11370. https://doi.org/10.1021/jp063862g
  • Mondal, M., Sarkar, C., Jamaddar, S., Khalipha, A. B. R., Islam, M. T., Mahafzah, A., & Mubarak, M. S. (2020). Evaluation of the binding affinity of anti-viral drugs against main protease of SARS-CoV-2 through a molecular docking study. Infectious Disorders Drug Targets. https://doi.org/10.2174/1871526520666201207124408
  • Mourad, J. J., & Levy, B. I. (2020). Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nature Reviews. Cardiology, 17(5), 313. https://doi.org/10.1038/s41569-020-0368-x
  • Park, J., Lee, S. H., You, S. C., Kim, J., & Yang, K. (2021). Effect of renin-angiotensin-aldosterone system inhibitors on Covid-19 patients in Korea. PLoS One, 16(3), e0248058. https://doi.org/10.1371/journal.pone.0248058
  • Pickard, A., Calverley, B. C., Chang, J., Garva, R., Lu, Y., & Kadler, K. E. (2021). Discovery of re-purposed drugs that slow SARS-CoV-2 replication in human cells. bioRxiv: The Preprint Server for Biology. https://doi.org/10.1101/2021.01.31.428851
  • Ramya, K., Suresh, R., Kumar, H. Y., Kumar, B. R. P., & Murthy, N. B. S. (2020). Decades-old renin inhibitors are still struggling to find a niche in antihypertensive therapy. A fleeting look at the old and the promising new molecules. Bioorganic & Medicinal Chemistry, 28(10), 115466. https://doi.org/10.1016/j.bmc.2020.115466
  • Raphael, V. P., & Shanmughan, S. K. (2020). Computational evaluation of the inhibition efficacies of HIV antivirals on SARS-CoV-2 (COVID-19) protease and identification of 3D pharmacophore and hit compounds. Advances in Pharmacological and Pharmaceutical Sciences, 2020, 8818008.
  • Rashikh, A., Ahmad, S. J., Pillai, K. K., & Najmi, A. K. (2012). Aliskiren as a novel therapeutic agent for hypertension and cardio-renal diseases. The Journal of Pharmacy and Pharmacology, 64(4), 470–481. https://doi.org/10.1111/j.2042-7158.2011.01414.x
  • Refaey, R. H., El-Ashrey, M. K., & Nissan, Y. M. (2021). Repurposing of renin inhibitors as SARS-COV-2 main protease inhibitors: A computational study. Virology, 554, 48–54. https://doi.org/10.1016/j.virol.2020.12.008
  • Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Pawlik, B., Wang, X., Jochmans, D., Neyts, J., Młynarski, W., Hilgenfeld, R., & Drag, M. (2021). SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nature Chemical Biology, 17(2), 222–228. https://doi.org/10.1038/s41589-020-00689-z
  • Sargolzaei, M. (2021). Effect of nelfinavir stereoisomers on coronavirus main protease: Molecular docking, molecular dynamics simulation and MM/GBSA study. Journal of Molecular Graphics & Modelling, 103, 107803. https://doi.org/10.1016/j.jmgm.2020.107803
  • Şen, S., & Üresin, A. Y. (2020). COVID-19 and RAAS blockers: Could Aliskiren be an appropriate option? Turk Kardiyoloji Dernegi Arsivi: Turk Kardiyoloji Derneginin Yayin Organidir, 48(7), 631–634.
  • Sepehrdad, R., Frishman, W. H., Stier, C. T., Jr., & Sica, D. A. (2007). Direct inhibition of renin as a cardiovascular pharmacotherapy: Focus on aliskiren. Cardiology in Review, 15(5), 242–256. https://doi.org/10.1097/CRD.0b013e318093e43a
  • Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M. F., Hussain, A., Rehman, M. T., Islam, A., & Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40(6), BSR20201256.
  • Simão, S., Santos, D. F., & Silva, G. A. (2017). Aliskiren decreases oxidative stress and angiogenic markers in retinal pigment epithelium cells. Angiogenesis, 20(1), 175–181. https://doi.org/10.1007/s10456-016-9526-5
  • Staessen, J. A., Li, Y., & Richart, T. (2006). Oral renin inhibitors. Lancet (London, England), 368(9545), 1449–1456. https://doi.org/10.1016/S0140-6736(06)69442-7
  • Sturrock, B. R., Milne, K. M., & Chevassut, T. J. (2020). The renin-angiotensin system - A therapeutic target in COVID-19? Clinical Medicine (London, England), 20(4), e72–e75. https://doi.org/10.7861/clinmed.2020-0146
  • Torshin, I. Y., Namiot, V. A., Esipova, N. G., & Tumanyan, V. G. (2021). Numeric analysis of reversibility of classic movement equations and constructive criteria of estimating quality of molecular dynamic simulations. Journal of Biomolecular Structure & Dynamics, 39(11), 4066–4076. https://doi.org/10.1080/07391102.2020.1773927
  • Vergoten, G., Mazur, I., Lagant, P., Michalski, J. C., & Zanetta, J. P. (2003). The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie, 85(1–2), 65–73. https://doi.org/10.1016/S0300-9084(03)00052-X
  • Wang, C., Guo, D., Wang, Q., You, S., Qiao, Z., Liu, Y., Dai, H., & Tang, H. (2016). Aliskiren targets multiple systems to alleviate cancer cachexia. Oncology Reports, 36(5), 3014–3022. https://doi.org/10.3892/or.2016.5118
  • Wang, J. (2020). Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling, 60(6), 3277–3286. https://doi.org/10.1021/acs.jcim.0c00179
  • Yeung, M. L., Teng, J. L. L., Jia, L., Zhang, C., Huang, C., Cai, J. P., Zhou, R., Chan, K. H., Zhao, H., Zhu, L., Siu, K. L., Fung, S. Y., Yung, S., Chan, T. M., To, K. K., Chan, J. F., Cai, Z., Lau, S. K. P., Chen, Z., … Yuen, K. Y. (2021). Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell, 184(8), 2212–2228. https://doi.org/10.1016/j.cell.2021.02.053
  • Zhao, Q., Shen, J., Lu, J., Jiang, Q., & Wang, Y. (2020). Clinical efficacy, safety and tolerability of Aliskiren Monotherapy (AM): An umbrella review of systematic reviews. BMC Cardiovascular Disorders, 20(1), 179. https://doi.org/10.1186/s12872-020-01442-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.