374
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Screening of Azadirachta indica phytoconstituents as GSK-3β inhibitor and its implication in neuroblastoma: molecular docking, molecular dynamics, MM-PBSA binding energy, and in-vitro study

, ORCID Icon, ORCID Icon &
Pages 12827-12840 | Received 07 Jun 2021, Accepted 29 Aug 2021, Published online: 27 Sep 2021

References

  • Alzohairy, M. A. (2016). Therapeutics role of Azadirachta indica (neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complementary and Alternative Medicine : eCAM, 2016, 7382506. https://doi.org/10.1155/2016/7382506
  • Amos, S., Lin, S., Stouffer, M., Wandling, E., Noland, L., Huanyun, D., Jean‐Loius, D., & Darkwah, B. (2021). Gedunin, a novel HSP90 inhibitor, decreases cellular growth and induces apoptosis in glioblastoma cell lines. The FASEB Journal, 35(S1), 35. https://doi.org/10.1096/fasebj.2021.35.S1.02456
  • Atkinson, J. M., Rank, K. B., Zeng, Y., Capen, A., Yadav, V., Manro, J. R., Engler, T. A., & Chedid, M. (2015). Activating the Wnt/β-catenin pathway for the treatment of melanoma-application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. PloS One, 10(4), e0125028. https://doi.org/10.1371/journal.pone.0125028
  • Bahmad, H. F., Chalhoub, R. M., Harati, H., Bou-Gharios, J., Assi, S., Ballout, F., Monzer, A., Msheik, H., Araji, T., Elajami, M. K., Ghanem, P., Chamaa, F., Kadara, H., Abou-Antoun, T., Daoud, G., Fares, Y., & Abou-Kheir, W. (2021). Tideglusib attenuates growth of neuroblastoma cancer stem/progenitor cells in vitro and in vivo by specifically targeting GSK-3β. Pharmacological Reports, 73(1), 211–226.
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., & Schneider, N. (2013, August). Abstract meaning representation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse (pp. 178–186).
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Beurel, E., Grieco, S. F., & Jope, R. S. (2015). Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacology & Therapeutics, 148, 114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117.
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2020). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 39(10), 3449–3458.
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Bioactive molecules of Tea as potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2. Frontiers in Medicine, 8, 684020.
  • Bhat, R. V., Andersson, U., Andersson, S., Knerr, L., Bauer, U., & Sundgren-Andersson, A. K. (2018). The conundrum of GSK3 inhibitors: Is it the dawn of a new beginning? Journal of Alzheimer's Disease : JAD, 64(s1), S547–S554.
  • Boonstra, S., Onck, P. R., & van der Giessen, E. (2016). CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. The Journal of Physical Chemistry. B, 120(15), 3692–3698.
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. A., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. https://doi.org/10.1002/jcc.540040211
  • Bustanji, Y., Taha, M. O., Almasri, I. M., Al-Ghussein, M. A., Mohammad, M. K., & Alkhatib, H. S. (2009). Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(3), 771–778.
  • Daggupati, T., Pamanji, R., & Yeguvapalli, S. (2018). In silico screening and identification of potential GSK3β inhibitors. Journal of Receptor and Signal Transduction Research, 38(4), 279–289.
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). New York, NY: Humana Press.
  • Darshit, B. S., & Ramanathan, M. (2016). Activation of AKT1/GSK-3 β/β-Catenin–TRIM11/Survivin pathway by novel GSK-3 β inhibitor promotes neuron cell survival: Study in differentiated SH-SY5Y cells in OGD model. Molecular Neurobiology, 53(10), 6716–6729. https://doi.org/10.1007/s12035-015-9598-z
  • Dickey, A., Schleicher, S., Leahy, K., Hu, R., Hallahan, D., & Thotala, D. K. (2011). GSK-3β inhibition promotes cell death, apoptosis, and in vivo tumor growth delay in neuroblastoma Neuro-2A cell line. Journal of Neuro-Oncology, 104(1), 145–153.
  • Domoto, T., Pyko, I. V., Furuta, T., Miyashita, K., Uehara, M., Shimasaki, T., Nakada, M., & Minamoto, T. (2016). Glycogen synthase kinase‐3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Science, 107(10), 1363–1372.
  • Duda, P., Wiśniewski, J., Wójtowicz, T., Wójcicka, O., Jaśkiewicz, M., Drulis-Fajdasz, D., Rakus, D., McCubrey, J. A., & Gizak, A. (2018). Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opinion on Therapeutic Targets, 22(10), 833–848.
  • Elangovan, N. D., Dhanabalan, A. K., Gunasekaran, K., Kandimalla, R., & Sankarganesh, D. (2020). Screening of potential drug for Alzheimer’s disease: A computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1805362
  • Eldar-Finkelman, H., & Martinez, A. (2011). GSK-3 inhibitors: Preclinical and clinical focus on CNS. Frontiers in Molecular Neuroscience, 4, 32.
  • Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W., & Roach, P. J. (1987). Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. The Journal of Biological Chemistry, 262(29), 14042–14048.
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Gould, T. D., Einat, H., Bhat, R., & Manji, H. K. (2004). AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. The International Journal of Neuropsychopharmacology, 7(4), 387–390. https://doi.org/10.1017/S1461145704004535
  • Haldar, S., Mulani, F. A., Aarthy, T., Dandekar, D. S., & Thulasiram, H. V. (2014). Expedient preparative isolation and tandem mass spectrometric characterization of C-seco triterpenoids from Neem oil. Journal of Chromatography. A, 1366, 1–14.
  • Hao, F., Kumar, S., Yadav, N., & Chandra, D. (2014). Neem components as potential agents for cancer prevention and treatment. Biochimica et Biophysica Acta, 1846(1), 247–257. https://doi.org/10.1016/j.bbcan.2014.07.002
  • Hasan, A., Haque, E., Hameed, R., Maier, P. N., Irfan, S., Kamil, M., Nazir, A., & Mir, S. S. (2020). Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and downregulating autophagy. Life Sciences, 256, 118000. https://doi.org/10.1016/j.lfs.2020.118000
  • Huang, H. C., Tang, D., Xu, K., & Jiang, Z. F. (2014). Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. Journal of Receptor and Signal Transduction Research, 34(1), 26–37.
  • Iwaloye, O., Elekofehinti, O. O., Oluwarotimi, E. A., Kikiowo, B. I., & Fadipe, T. M. (2020). Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: In silico studies. In Silico Pharmacology, 8(1), 2–13. https://doi.org/10.1007/s40203-020-00054-x
  • Ji, Y., Dai, F., Yan, S., Shi, J. Y., & Zhou, B. (2019). Identification of catechol-type diphenylbutadiene as a tyrosinase-activated pro-oxidative chemosensitizer against melanoma A375 cells via glutathione S-transferase inhibition. Journal of Agricultural and Food Chemistry, 67(32), 9060–9069.
  • Johnsen, J. I., Dyberg, C., & Wickström, M. (2019). Neuroblastoma—A neural crest derived embryonal malignancy. Frontiers in Molecular Neuroscience, 12, 9.
  • Johnson, J., Venugopal, A., Kwatra, D., Roby, K., Godwin, A., & Anant, S. (2014). Gedunin, a novel HSP-90 inhibitor, synergizes with cisplatin and paclitaxel to inhibit growth of chemoresistant ovarian cancer cell lines. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research.Cancer Research, 74(14).
  • Kanninen, K., White, A. R., Koistinaho, J., & Malm, T. (2011). Targeting glycogen synthase kinase-3β for therapeutic benefit against oxidative stress in Alzheimer's disease: Involvement of the Nrf2-ARE Pathway. International Journal of Alzheimer's Disease, 2011, 985085. https://doi.org/10.4061/2011/985085
  • Kishore T, K. K., Ganugula, R., Gade, D. R., Reddy, G. B., & Nagini, S. (2016). Gedunin abrogates aldose reductase, PI3K/Akt/mToR, and NF-κB signaling pathways to inhibit angiogenesis in a hamster model of oral carcinogenesis. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(2), 2083–2093. https://doi.org/10.1007/s13277-015-4003-0
  • Kotliarova, S., Pastorino, S., Kovell, L. C., Kotliarov, Y., Song, H., Zhang, W., Bailey, R., Maric, D., Zenklusen, J. C., Lee, J., & Fine, H. A. (2008). Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-κB, and glucose regulation. Cancer Research, 68(16), 6643–6651.
  • Kramer, T., Schmidt, B., & Lo Monte, F. (2012). Small-molecule inhibitors of GSK-3: Structural insights and their application to Alzheimer's disease models. International Journal of Alzheimer's Disease, 2012, 381029. https://doi.org/10.1155/2012/381029
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kunnimalaiyaan, S., Schwartz, V. K., Jackson, I. A., Gamblin, T. C., & Kunnimalaiyaan, M. (2018). Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro. BMC Cancer, 18(1), 560–568.
  • Lee, S., Tran, A., Allsopp, M., Lim, J. B., Hénin, J., & Klauda, J. B. (2014). CHARMM36 united atom chain model for lipids and surfactants. The Journal of Physical Chemistry. B, 118(2), 547–556.
  • Li, H., Wu, J. G., Zhang, H. W., Wang, W., Zhang, Y. X., & Zhang, J. N. (2018). Inhibition of proliferation, invasion and migration in U-251 MG glioblastoma cell line by gedunin. International Journal of Pharmacology, 14(4), 522–527. https://doi.org/10.3923/ijp.2018.522.527
  • Linding, R., Jensen, L. J., Ostheimer, G. J., van Vugt, M. A. T. M., Jørgensen, C., Miron, I. M., Diella, F., Colwill, K., Taylor, L., Elder, K., Metalnikov, P., Nguyen, V., Pasculescu, A., Jin, J., Park, J. G., Samson, L. D., Woodgett, J. R., Russell, R. B., Bork, P., Yaffe, M. B., & Pawson, T. (2007). Systematic discovery of in vivo phosphorylation networks. Cell, 129(7), 1415–1426.
  • MacAulay, K., Hajduch, E., Blair, A. S., Coghlan, M. P., Smith, S. A., & Hundal, H. S. (2003). Use of lithium and SB‐415286 to explore the role of glycogen synthase kinase‐3 in the regulation of glucose transport and glycogen synthase. European Journal of Biochemistry, 270(18), 3829–3838.
  • Maqbool, M., & Hoda, N. (2017). GSK3 inhibitors in the therapeutic development of diabetes, cancer and neurodegeneration: Past, present and future. Current Pharmaceutical Design, 23(29), 4332–4350.
  • Mathuram, T. L., Ravikumar, V., Reece, L. M., Karthik, S., Sasikumar, C. S., & Cherian, K. M. (2016). Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environmental Toxicology and Pharmacology, 46, 194–205.
  • McCubrey, J. A., Lertpiriyapong, K., Steelman, L. S., Abrams, S. L., Cocco, L., Ratti, S., Martelli, A. M., Candido, S., Libra, M., Montalto, G., Cervello, M., Gizak, A., & Rakus, D. (2017). Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Advances in Biological Regulation, 65, 77–88.
  • McMillin, D. W., Ooi, M., Delmore, J., Negri, J., Hayden, P., Mitsiades, N., Jakubikova, J., Maira, S.-M., Garcia-Echeverria, C., Schlossman, R., Munshi, N. C., Richardson, P. G., Anderson, K. C., & Mitsiades, C. S. (2009). Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Research, 69(14), 5835–5842. https://doi.org/10.1158/0008-5472.CAN-08-4285
  • Montagnani, V., & Stecca, B. (2019). Role of protein kinases in hedgehog pathway control and implications for cancer therapy. Cancers, 11(4), 449.
  • Ngok-Ngam, P., Watcharasit, P., Thiantanawat, A., & Satayavivad, J. (2013). Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cellular & Molecular Biology Letters, 18(1), 58–74.
  • Nisha, C. M., Kumar, A., Vimal, A., Bai, B. M., Pal, D., & Kumar, A. (2016). Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. Journal of Molecular Graphics & Modelling, 65, 100–107.
  • Nwokwu, C. D. U., Samarakoon, S. R., Karunaratne, D. N., Katuvawila, N. P., Pamunuwa, G. K., Ediriweera, M. K., & Tennekoon, K. H. (2017). Induction of apoptosis in response to improved gedunin by liposomal nano-encapsulation in human non-small-cell lung cancer (NCI-H292) cell line. Tropical Journal of Pharmaceutical Research, 16(9), 2079–2087. https://doi.org/10.4314/tjpr.v16i9.6
  • Pandey, M. K., & DeGrado, T. R. (2016). Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics, 6(4), 571–593. https://doi.org/10.7150/thno.14334
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.
  • Pizarro, J. G., Folch, J., Esparza, J. L., Jordan, J., Pallàs, M., & Camins, A. (2009). A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK‐3 inhibitors lithium and SB‐415286. Journal of Cellular and Molecular Medicine, 13(9b), 3906–3917.
  • Poulose, S. M., Harris, E. D., & Patil, B. S. (2006). Antiproliferative effects of citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells. Nutrition and Cancer, 56(1), 103–112. https://doi.org/10.1207/s15327914nc5601_14
  • Rahman, M. A., Kim, N. H., Yang, H., & Huh, S. O. (2012). Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Molecular and Cellular Biochemistry, 369(1-2), 95–104.
  • Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., III, & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Rizzieri, D. A., Cooley, S., Odenike, O., Moonan, L., Chow, K. H., Jackson, K., Wang, X., Brail, L., & Borthakur, G. (2016). An open-label phase 2 study of glycogen synthase kinase-3 inhibitor LY2090314 in patients with acute leukemia. Leukemia & Lymphoma, 57(8), 1800–1806. https://doi.org/10.3109/10428194.2015.1122781
  • Sahai, R., Bhattacharjee, A., Shukla, V. N., Yadav, P., Hasanain, M., Sarkar, J., Narender, T., & Mitra, K. (2020). Gedunin isolated from the mangrove plant Xylocarpus granatum exerts its anti-proliferative activity in ovarian cancer cells through G2/M-phase arrest and oxidative stress-mediated intrinsic apoptosis. Apoptosis : An International Journal on Programmed Cell Death, 25(7-8), 481–499.
  • Saitoh, M., Kunitomo, J., Kimura, E., Hayase, Y., Kobayashi, H., Uchiyama, N., Kawamoto, T., Tanaka, T., Mol, C. D., Dougan, D. R., Textor, G. S., Snell, G. P., & Itoh, F. (2009). Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta . Bioorganic & Medicinal Chemistry, 17(5), 2017–2029. https://doi.org/10.1016/j.bmc.2009.01.019
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923.
  • Sarkar, L., Putchala, R. K., Safiriyu, A. A., & Das Sarma, J. (2020). Azadirachtaindica A. Juss ameliorates mouse hepatitis virus-induced neuroinflammatory demyelination by modulating cell-to-cell fusion in an experimental animal model of multiple sclerosis. Frontiers in Cellular Neuroscience, 14, 116. https://doi.org/10.3389/fncel.2020.00116
  • Sharma, J., Bhardwaj, V. K., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Shi, Y.-S., Zhang, Y., Li, H.-T., Wu, C.-H., El-Seedi, H. R., Ye, W.-K., Wang, Z.-W., Li, C.-B., Zhang, X.-F., & Kai, G.-Y. (2020). Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. Journal of Functional Foods, 75, 104213. https://doi.org/10.1016/j.jff.2020.104213
  • Singh, R., Bhardwaj, V. K., Das, P., & Purohit, R. (2021). A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Computers in Biology and Medicine, 135, 104555. https://doi.org/10.1016/j.compbiomed.2021.104555
  • Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R., & Kumar, S. (2021). In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of Traditional and Complementary Medicine. https://doi.org/10.1016/j.jtcme.2021.05.005. ISSN 2225–4110
  • Sophia, J., Kiran Kishore T, K., Kowshik, J., Mishra, R., & Nagini, S. (2016). Nimbolide, a neem limonoid inhibits phosphatidyl inositol-3 kinase to activate glycogen synthase kinase-3β in a hamster model of oral oncogenesis. Scientific Reports, 6(1), 22192–22113. https://doi.org/10.1038/srep22192
  • Subramani, R., Gonzalez, E., Nandy, S. B., Arumugam, A., Camacho, F., Medel, J., Alabi, D., & Lakshmanaswamy, R. (2017). Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget, 8(7), 10891–10904.
  • Sutherland, C. (2011). What are the bona fide GSK3 substrates? International Journal of Alzheimer's Disease, 2011, 505607. https://doi.org/10.4061/2011/505607
  • Tanagala, K. K., Baba, A. B., Kowshik, J., Reddy, G. B., & Nagini, S. (2018). Gedunin, a neem limonoid in combination with epalrestat inhibits cancer hallmarks by attenuating aldose reductase-driven oncogenic signaling in SCC131 oral cancer cells. Anti-Cancer Agents in Medicinal Chemistry, 18(14), 2042–2052. https://doi.org/10.2174/1871520618666180731093433
  • Tate, E. H., Wilder, M. E., Cram, L. S., & Wharton, W. (1983). A method for staining 3T3 cell nuclei with propidium iodide in hypotonic solution. Cytometry, 4(3), 211–215. https://doi.org/10.1002/cyto.990040304
  • Ugolkov, A. V., Bondarenko, G. I., Dubrovskyi, O., Berbegall, A. P., Navarro, S., Noguera, R., O'Halloran, T. V., Hendrix, M. J., Giles, F. J., & Mazar, A. P. (2018). 9-ING-41, a small molecule Glycogen Synthase Kinase-3 inhibitor, is active in neuroblastoma. Anti-Cancer Drugs, 29(8), 717–724.
  • Valvezan, A. J., & Klein, P. S. (2012). GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Frontiers in Molecular Neuroscience, 5, 1.
  • Van Drie, J. H. (2007). Computer-aided drug design: The next 20 years. Journal of Computer-Aided Molecular Design, 21(10–11), 591–601. https://doi.org/10.1007/s10822-007-9142-y
  • Veeraraghavan, J., Aravindan, S., Natarajan, M., Awasthi, V., Herman, T. S., & Aravindan, N. (2011). Neem leaf extract induces radiosensitization in human neuroblastoma xenograft through modulation of apoptotic pathway. Anticancer Research, 31(1), 161–170.
  • Venna, V. R., Benashski, S. E., Chauhan, A., & McCullough, L. D. (2015). Inhibition of glycogen synthase kinase-3β enhances cognitive recovery after stroke: The role of TAK1. Learning & Memory (Cold Spring Harbor, N.Y.), 22(7), 336–343.
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.