264
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based identification of novel scaffolds as potential HIV-1 entry inhibitors involving CCR5

ORCID Icon, & ORCID Icon
Pages 13115-13126 | Received 27 May 2021, Accepted 13 Sep 2021, Published online: 27 Sep 2021

Reference

  • ASINEX. (2020). ASINEX database. ASINEX Corporation.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chaudhary, N., & Aparoy, P. (2017). Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies. Journal of Biomolecular Structure & Dynamics, 35(4), 868–882. https://doi.org/10.1080/07391102.2016.1165736
  • Daga, P. R., Bolger, M. B., Haworth, I. S., Clark, R. D., & Martin, E. J. (2018). Physiologically based pharmacokinetic modeling in lead optimization. 2. Rational bioavailability design by global sensitivity analysis to identify properties affecting bioavailability. Molecular Pharmaceutics, 15(3), 831–839. https://doi.org/10.1021/acs.molpharmaceut.7b00973
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh ewald: An N⋅ Log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • de Freitas, R. F., & Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/c7md00381a
  • Debnath, A. K. (2003). Generation of predictive pharmacophore models for CCR5 antagonists: Study with piperidine- and piperazine-based compounds as a new class of HIV-1 entry inhibitors. Journal of Medicinal Chemistry, 46(21), 4501–4515. https://doi.org/10.1021/jm030265z
  • Dickson, C. J., Madej, B. D., Skjevik, A. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307
  • Di, L., & Kerns, E. H. (2015). Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press.
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • FDA, U S. (2007). FDA notifications. Maraviroc approved as a CCR5 Co-receptor antagonist. AIDS Alert, 22, 103.
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Forli, S. (2010). Raccoon| AutoDock VS: An automated tool for preparing autodock virtual screenings.
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Garcia-Perez, J., Rueda, P., Alcami, J., Rognan, D., Arenzana-Seisdedos, F., Lagane, B., & Kellenberger, E. (2011). Allosteric model of Maraviroc binding to CC chemokine receptor 5 (CCR5). The Journal of Biological Chemistry, 286(38), 33409–33421. https://doi.org/10.1074/jbc.M111.279596
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6-7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Gulick, R. M., Su, Z., Flexner, C., Hughes, M. D., Skolnik, P. R., Wilkin, T. J., Gross, R., Krambrink, A., Coakley, E., Greaves, W. L., Zolopa, A., Reichman, R., Godfrey, C., Hirsch, M., & Kuritzkes, D. R. (2007). Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV‐1–infected, treatment‐experienced patients: AIDS clinical trials group 5211. The Journal of Infectious Diseases, 196(2), 304–312. https://doi.org/10.1086/518797
  • Hughes, T. E. T., Del Rosario, J. S., Kapoor, A., Yazici, A. T., Yudin, Y., Fluck, E. C., Filizola, M., Rohacs, T., & Moiseenkova-Bell, V. Y. (2019). Structure-based characterisation of novel TRPV5 inhibitors. eLife, 8, e49572. https://doi.org/10.7554/eLife.49572
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., ... & Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y.
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Klibanov, O. M., Williams, S. H., & Iler, C. A. (2010). Cenicriviroc, an orally active CCR5 antagonist for the potential treatment of HIV infection. Current Opinion in Investigational Drugs (London, England : 2000), 11(8), 940–950.
  • Lin, H.-Y., Ho, Y., & Liu, H.-L. (2019). Structure-based pharmacophore modeling to discover novel CCR5 inhibitors for HIV-1/cancers therapy. Journal of Biomedical Science and Engineering, 12(01), 10–30. https://doi.org/10.4236/jbise.2019.121002
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Llanos, G. G., Araujo, L. M., Jiménez, I. A., Moujir, L. M., Rodríguez, J., Jiménez, C., & Bazzocchi, I. L. (2017). Structure-based design, synthesis, and biological evaluation of withaferin a-analogues as potent apoptotic inducers. European Journal of Medicinal Chemistry, 140, 52–64. https://doi.org/10.1016/j.ejmech.2017.09.004
  • Lomize, M. A., Lomize, A. L., Pogozheva, I. D., & Mosberg, H. I. (2006). OPM: Orientations of Proteins in Membranes Database. Bioinformatics (Oxford, England), 22(5), 623–625. https://doi.org/10.1093/bioinformatics/btk023
  • Lu, J. J., Crimin, K., Goodwin, J. T., Crivori, P., Orrenius, C., Xing, L., Tandler, P. J., Vidmar, T. J., Amore, B. M., Wilson, A. G. E., Stouten, P. F. W., & Burton, P. S. (2004). Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. Journal of Medicinal Chemistry, 47(24), 6104–6107. https://doi.org/10.1021/jm0306529
  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701. https://doi.org/10.1007/s12272-015-0640-5
  • Mandal, S., Moudgil, M., & Mandal, S. K. (2009). Rational drug design. European Journal of Pharmacology, 625(1-3), 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065
  • Meanwell, N. A. (2011). Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety. Chemical Research in Toxicology, 24(9), 1420–1456. https://doi.org/10.1021/tx200211v
  • Nichols, W. G., Steel, H. M., Bonny, T., Adkison, K., Curtis, L., Millard, J., Kabeya, K., & Clumeck, N. (2008). Hepatotoxicity observed in clinical trials of Aplaviroc (GW873140). Antimicrobial Agents and Chemotherapy, 52(3), 858–865. https://doi.org/10.1128/AAC.00821-07
  • Omran, Z., & Rauch, C. (2014). Acid-Mediated Lipinski's second rule: application to drug design and targeting in cancer. European Biophysics Journal : EBJ, 43(4-5), 199–206. https://doi.org/10.1007/s00249-014-0953-1
  • Oppermann, M. (2004). Chemokine receptor CCR5: Insights into structure, function, and regulation. Cellular Signalling, 16(11), 1201–1210. https://doi.org/10.1016/j.cellsig.2004.04.007
  • Peng, P., Chen, H., Zhu, Y., Wang, Z., Li, J., Luo, R.-H., Wang, J., Chen, L., Yang, L.-M., Jiang, H., Xie, X., Wu, B., Zheng, Y.-T., & Liu, H. (2018). Structure-Based design of 1-heteroaryl-1,3-propanediamine derivatives as a novel series of CC-chemokine receptor 5 antagonists. Journal of Medicinal Chemistry, 61(21), 9621–9636. https://doi.org/10.1021/acs.jmedchem.8b01077
  • Pereira, A. B., Rezende, N. A. d., Teixeira Junior, A. L., Teixeira, M. M., & Simões e Silva, A. C. (2009). Citocinas e Quimiocinas No Transplante Renal. Jornal Brasileiro de Nefrologia, 31(4), 286–296. https://doi.org/10.1590/S0101-28002009000400007
  • Pérez-Nueno, V. I., Ritchie, D. W., Borrell, J. I., & Teixido, J. (2008). Clustering and classifying diverse HIV entry inhibitors using a novel consensus shape-based virtual screening approach: further evidence for multiple binding sites within the CCR5 extracellular pocket. Journal of Chemical Information and Modeling, 48(11), 2146–2165. https://doi.org/10.1021/ci800257x
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Podder, A., Pandey, D., & Latha, N. (2016). Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies. Biochimie, 123, 52–64. https://doi.org/10.1016/j.biochi.2016.01.011
  • Prasanna, S., & Doerksen, R. (2009). Topological polar surface area: A useful descriptor in 2D-QSAR. Current Medicinal Chemistry, 16(1), 21–41. https://doi.org/10.2174/092986709787002817
  • Renukuntla, J., Vadlapudi, A. D., Patel, A., Boddu, S. H. S., & Mitra, A. K. (2013). Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics, 447(1-2), 75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030
  • Rodríguez, D., Brea, J., Loza, M. I., & Carlsson, J. (2014). Structure-Based discovery of selective serotonin 5-HT(1B) receptor ligands. Structure (London, England : 1993), 22(8), 1140–1151. https://doi.org/10.1016/j.str.2014.05.017
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Schrödinger Release 2019-4. (2019). Maestro. https://www.schrodinger.com/Maestro.
  • Schürmann, D., Fätkenheuer, G., Reynes, J., Michelet, C., Raffi, F., van Lier, J., Caceres, M., Keung, A., Sansone-Parsons, A., Dunkle, L. M., & Hoffmann, C. (2007). Antiviral activity, pharmacokinetics and safety of vicriviroc, an oral CCR5 antagonist, during 14-day monotherapy in HIV-infected adults. AIDS (London, England), 21(10), 1293–1299. https://doi.org/10.1097/QAD.0b013e3280f00f9f
  • Seifert, E. (2014). OriginPro 9.1: Scientific data analysis and graphing software-software review. Journal of Chemical Information and Modeling, 54(5), 1552–1552. https://doi.org/10.1021/ci500161d
  • Shaik, M. M., Peng, H., Lu, J., Rits-Volloch, S., Xu, C., Liao, M., & Chen, B. (2019). Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature, 565(7739), 318–323. https://doi.org/10.1038/s41586-018-0804-9
  • Shityakov, S., Neuhaus, W., Dandekar, T., & Förster, C. (2013). Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 6(1/2), 146–156. https://doi.org/10.1504/IJCBDD.2013.052195
  • Spagnolo, P., Renzoni, E. A., Wells, A. U., Copley, S. J., Desai, S. R., Sato, H., Grutters, J. C., Abdallah, A., Taegtmeyer, A., Du Bois, R. M., & Welsh, K. I. (2005). C-C chemokine receptor 5 gene variants in relation to lung disease in sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 172(6), 721–728. https://doi.org/10.1164/rccm.200412-1707OC
  • Sprenger, K. G., Jaeger, V. W., & Pfaendtner, J. (2015). The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. The Journal of Physical Chemistry. B, 119(18), 5882–5895. https://doi.org/10.1021/acs.jpcb.5b00689
  • Sun, R., Han, Y., Swanson, J. M. J., Tan, J. S., Rose, J. P., & Voth, G. A. (2018). Molecular transport through membranes: Accurate permeability coefficients from multidimensional potentials of mean force and local diffusion constants. The Journal of Chemical Physics, 149(7), 072310. https://doi.org/10.1063/1.5027004
  • Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G. W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R. C., Zhao, Q., & Wu, B. (2013). Structure of the CCR5 chemokine receptor-HIV Entry inhibitor maraviroc complex. Science (New York, N.Y.), 341(6152), 1387–1390. https://doi.org/10.1126/science.1241475
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimisation, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vallianatou, T., Giaginis, C., & Tsantili-Kakoulidou, A. (2015). The impact of physicochemical and molecular properties in drug design: Navigation in the "drug-like" chemical space. Advances in Experimental Medicine and Biology, 822, 187–194. https://doi.org/10.1007/978-3-319-08927-0_21
  • Vangelista, L., & Vento, S. (2017). The expanding therapeutic perspective of CCR5 blockade. Frontiers in Immunology, 8, 1981. https://doi.org/10.3389/fimmu.2017.01981
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, J., & Hou, T. (2011). Recent advances on aqueous solubility prediction. Combinatorial Chemistry & High Throughput Screening, 14(5), 328–338. https://doi.org/10.2174/138620711795508331
  • Wang, J., Shu, M., Wang, Y., Hu, Y., Wang, Y., Luo, Y., & Lin, Z. (2016). Identification of potential CCR5 inhibitors through pharmacophore-based virtual screening, molecular dynamics simulation and binding free energy analysis. Molecular bioSystems, 12(11), 3396–3406. https://doi.org/10.1039/c6mb00577b
  • Wang, X., Song, K., Li, L., & Chen, L. (2018). Structure-Based drug design strategies and challenges. Current Topics in Medicinal Chemistry, 18(12), 998–1006. https://doi.org/10.2174/1568026618666180813152921
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber, an accessory software package for molecular mechanical calculations correspondence to. Journal of Chemical Information and Computer Sciences, 26(222), 403–408.
  • Woollard, S. M., & Kanmogne, G. D. (2015). Maraviroc: A review of its use in HIV infection and beyond. Drug Design, Development and Therapy, 9, 5447–5468.
  • Xu, Y., Liu, H., Niu, C., Luo, C., Luo, X., Shen, J., Chen, K., & Jiang, H. (2004). Molecular docking and 3D QSAR studies on 1-amino-2-phenyl-4-(Piperidin-1-Yl)-butanes based on the structural modeling of human CCR5 receptor. Bioorganic & Medicinal Chemistry, 12(23), 6193–6208. https://doi.org/10.1016/j.bmc.2004.08.045
  • Yang, Y., Shen, Y., Liu, H., & Yao, X. (2011). Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with P38α MAP kinase. Journal of Chemical Information and Modeling, 51(12), 3235–3246. https://doi.org/10.1021/ci200159g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.