280
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Mutational profile confers increased stability of SARS-CoV-2 spike protein in Brazilian isolates

, , , , , , , , & show all
Pages 13184-13189 | Received 07 Apr 2021, Accepted 14 Sep 2021, Published online: 11 Oct 2021

References

  • Ahamad, S., Hema, K., & Gupta, D. (2021). Structural stability predictions and molecular dynamics simulations of RBD and HR1 mutations associated with SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure & Dynamics, 39, 1–13. https://doi.org/10.1080/07391102.2021.1889671
  • Aljindan, R. Y., Al-Subaie, A. M., Al-Ohali, A. I., Kumar D, T., Doss C, G. P., & Kamaraj, B. (2021). Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Computers in Biology and Medicine, 135, 104654. https://doi.org/10.1016/j.compbiomed.2021.104654
  • Callaway, E. (2021). Coronavirus variants get Greek names — but will scientists use them? Nature, 594(7862), 162. https://doi.org/10.1038/d41586-021-01483-0
  • Capriotti, E., Fariselli, P., Calabrese, R., & Casadio, R. (2005). Predicting protein stability changes from sequences using support vector machines. Bioinformatics (Oxford, England), 21 Suppl 2 (Suppl 2), ii54–ii58. https://doi.org/10.1093/bioinformatics/bti1109
  • Cirauqui Diaz, N., Frezza, E., & Martin, J. (2021). Using normal mode analysis on protein structural models. How far can we go on our predictions? Proteins Struct Proteins, 89(5), 531–543. https://doi.org/10.1002/prot.26037
  • Dongwan, K., Lee, J.-Y., Yang, J.-S., Kim, J. W., Kim, V. N., & Chang, H. (2020). The architecture of SARS-CoV-2 transcriptome. Cell, 181(4), 914–921. https://doi.org/10.1016/j.cell.2020.04.011
  • Drosten, C., Günther, S., Preiser, W., Van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A. M., Berger, A., Burguière, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Müller, S., … Doerr, H. W. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England Journal of Medicine, 348(20), 1967–1976. https://doi.org/10.1056/NEJMoa030747
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV-a target for vaccine and therapeutic development . Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Gobeil, S. M.-C., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Stalls, V., Kopp, M. F., Manne, K., Li, D., Wiehe, K., Saunders, K. O., Edwards, R. J., Korber, B., Haynes, B. F., Henderson, R., & Acharya, P. (2021). Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science (New York, N.Y.), 373(6555), 1-16. https://doi.org/10.1126/science.abi6226
  • Jangra, S., Ye, C., Rathnasinghe, R., Stadlbauer, D., Krammer, F., Simon, V., Martinez-Sobrido, L., Garcia-Sastre, A., & Schotsaert, M. (2021). The E484K mutation in the SARS-CoV-2 spike protein reduces but does not abolish neutralizing activity of human convalescent and post-vaccination sera. medRxiv Prepr. Serv. Heal. Sci., https://doi.org/10.1101/2021.01.26.21250543
  • Khalid, Z., & Naveed, H. (2020). Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: Implications for virus entry mechanisms. Journal of Biomolecular Structure & Dynamics, 38, 1–11. https://doi.org/10.1080/07391102.2020.1823885 https://doi.org/10.1080/07391102.2020.1823885
  • Khan, A., Zia, T., Suleman, M., & Khan, T. (2021). Higher infectivity of the SARS ‐ CoV ‐ 2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236, 1–13. https://doi.org/10.1002/jcp.30367
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Li, T., Tang, X., Wu, C., Yao, X., Wang, Y., Lu, X., & Lu, J. (2020). The use of SARS-CoV-2-related coronaviruses from bats and pangolins to polarize mutations in SARS-Cov-2. Science China. Life Sciences, 63(10), 1608–1611. https://doi.org/10.1007/s11427-020-1764-2
  • Liu, Q., Zhao, S., Shi, C. M., Song, S., Zhu, S., Su, Y., Zhao, W., Li, M., Bao, Y., Xue, Y., & Chen, H. (2020). Population Genetics of SARS-CoV-2: Disentangling Effects of Sampling Bias and Infection Clusters. Genomics, Proteomics Bioinforma, 18, 640–647. https://doi.org/10.1016/j.gpb.2020.06.001
  • Li, Y., Wang, T., Zhang, J., Shao, B., Gong, H., Wang, Y., Liu, S., & Liu, T.-Y. (2021). Exploring the Regulatory Function of the N-terminal Domain of SARS-CoV-2 Spike Protein Through Molecular Dynamics Simulation.
  • Mahmoudi Gomari, M., Rostami, N., Omidi-Ardali, H., & Arab, S. S. (2021). Insight into molecular characteristics of SARS-CoV-2 spike protein following D614G point mutation, a molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 39, 1–9. https://doi.org/10.1080/07391102.2021.1872418
  • McCallum, M., Marco, A. D., Lempp, F. A., Tortorici, M. A., Pinto, D., Walls, A. C., Beltramello, M., Chen, A., Liu, Z., Zatta, F., Zepeda, S., Iulio, J., di, Bowen, J. E., Montiel-Ruiz, M., Zhou, J., Rosen, L. E., Bianchi, S., Guarino, B., Fregni, C. S., … Veesler, D. (2021). N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 184(9), 2332–2347.e16. https://doi.org/10.1016/j.cell.2021.03.028
  • Mercatelli, D., & Giorgi, F. M. (2020). Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Frontiers in Microbiology, 11, 1800–1813. https://doi.org/10.3389/fmicb.2020.01800
  • Mohammad, A., Alshawaf, E., Marafie, S. K., Abu-Farha, M., Abubaker, J., & Al-Mulla, F. (2021). Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. International Journal of Infectious Diseases : IJID : official Publication of the International Society for Infectious Diseases, 103, 611–616. https://doi.org/10.1016/j.ijid.2020.10.033
  • Moura, A., Costa, H., Correa, V., Lima, A., Lindoso, J., Gaspari, E. D., Hong, M., Cunha-Junior, J., & Prudencio, C. (2021). Assessment of avidity related to IgG subclasses in SARS‑CoV‑2 Brazilian infected patients. Scientific Reports, 11, 17642. https://doi.org/10.1038/s41598-021-95045-z
  • Nassar, M. S., Bakhrebah, M. A., Meo, S. A., Alsuabeyl, M. S., & Zaher, W. A. (2018). Global seasonal occurrence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection. European Review for Medical and Pharmacological Sciences, 22(12), 3913–3918. https://doi.org/10.26355/eurrev-201806-15276
  • Ortuso, F., Mercatelli, D., Guzzi, P. H., & Giorgi, F. M. (2021). Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. Journal of Biomolecular Structure & Dynamics, 39, 1–11. https://doi.org/10.1080/07391102.2021.1886175
  • Ozono, S., Zhang, Y., Ode, H., Sano, K., Tan, T. S., Imai, K., Miyoshi, K., Kishigami, S., Ueno, T., Iwatani, Y., Suzuki, T., & Tokunaga, K. (2021). SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat. Commun. 2021, 121 12, 1–9. https://doi.org/10.1038/s41467-021-21118-2
  • Peret, T., Ph, D., Emery, S., Tong, S., Ph, D., Urbani, C., Comer, J. A., Ph, D., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A., Humphrey, C. D., Ph, D., Fields, B., Ph, D., Derisi, J., Ph, D., Yang, J., … Group, W, SARS Working Group. (2003). A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. The New England Journal of Medicine, 348(20), 1953–1966. https://doi.org/10.1056/NEJMoa030781
  • Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., … Shi, P. Y. (2021). Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592(7852), 116–121. https://doi.org/10.1038/s41586-020-2895-3
  • Rambaut, A., Holmes, E. C., O'Toole, Á., Hill, V., McCrone, J. T., Ruis, C., Du Plessis, L., & Pybus, O. G. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 5(11), 1403–1407. https://doi.org/10.1038/s41564-020-0770-5
  • Resende, P. C., Delatorre, E., Gräf, T., Mir, D., Motta, F., do, C., Appolinario, L. R., da Paixão, A. C. D., Ogrzewalska, M., Caetano, B., dos Santos, M. C., de Almeida Ferreira, J., Santos Junior, E. C., da Silva, S. P., Fernandes, S. B., Vianna, L. A., da Costa Souza, L., Ferro, J. F. G., Nardy, V. B., Croda, J., … Siqueira, M. M. (2020). Genomic surveillance of SARS-CoV-2 reveals community transmission of a major lineage during the early pandemic phase in Brazil. bioRxiv 2020.06.17.158006. https://doi.org/10.1101/2020.06.17.158006
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Rozewicki, J., Li, S., Amada, K. M., Standley, D. M., & Katoh, K. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Research, 47(W1), W5–W10.https://doi.org/10.1093/NAR/GKZ342
  • Starr, T. N., A. J., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell, 182(5), 1295–1310.e20. https://doi.org/10.1016/j.cell.2020.08.012
  • Suryadevara, N., Shrihari, S., Gilchuk, P., VanBlargan, L. A., Binshtein, E., Zost, S. J., Nargi, R. S., Sutton, R. E., Winkler, E. S., Chen, E. C., Fouch, M. E., Davidson, E., Doranz, B. J., Chen, R. E., Shi, P.-Y., Carnahan, R. H., Thackray, L. B., Diamond, M. S., & Crowe, J. E. J. (2021). Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 184(9), 2316–2331.e15. https://doi.org/10.1016/j.cell.2021.03.029
  • Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6), 1012–1023. https://doi.org/10.1093/nsr/nwaa036
  • Tang, X., Ying, R., Yao, X., Li, G., Wu, C., Tang, Y., Li, Z., Kuang, B., Wu, F., Chi, C., Du, X., Qin, Y., Gao, S., Hu, S., Ma, J., Liu, T., Pang, X., Wang, J., Zhao, G., … Lu, J. (2021). Evolutionary analysis and lineage designation of SARS-CoV-2 genomes. Science Bulletin, 66, 2297–2311. https://doi.org/10.1016/j.scib.2021.02.012
  • Teng, S., Sobitan, A., Rhoades, R., Liu, D., & Tang, Q. (2021). Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Briefings in Bioinformatics, 22(2), 1239–1253. https://doi.org/10.1093/bib/bbaa233
  • Townsend, A., Rijal, P., Xiao, J., Tan, T. K., Huang, K.-Y. A., Schimanski, L., Huo, J., Gupta, N., Rahikainen, R., Matthews, P. C., Crook, D., Hoosdally, S., Dunachie, S., Barnes, E., Street, T., Conlon, C. P., Frater, J., Arancibia-Cárcamo, C. V., Rudkin, J., … Joly, E. (2021). A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nature Communications, 12(1), 1951. (1951).https://doi.org/10.1038/s41467-021-22045-y
  • Woo, P. C. Y., Lau, S. K. P., Huang, Y., & Yuen, K. Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Experimental Biology and Medicine (Maywood, N.J.), 234(10), 1117–1127. https://doi.org/10.3181/0903-MR-94
  • Xie, X., Liu, Y., Liu, J., Zhang, X., Zou, J., Fontes-Garfias, C. R., Xia, H., Swanson, K. A., Cutler, M., Cooper, D., Menachery, V. D., Weaver, S. C., Dormitzer, P. R., & Shi, P. Y. (2021). Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine, 27(4), 620–621.https://doi.org/10.1038/s41591-021-01270-4
  • Zaki, A. M., Van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 367(19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721
  • Zhu, G., Zhu, C., Zhu, Y., & Sun, F. (2020). Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial Sciences, 1, 53–61. https://doi.org/10.1016/j.crmicr.2020.06.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.