412
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Non-bonding energy directed designing of HDAC2 inhibitors through molecular dynamics simulation

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 13432-13455 | Received 04 Jun 2021, Accepted 27 Sep 2021, Published online: 18 Oct 2021

References

  • Abdel-Atty, M. M., Farag, N. A., Kassab, S. E., Serya, R. A. T., & Abouzid, K. A. M. (2014). Design, synthesis, 3D pharmacophore, QSAR, and docking studies of carboxylic acid derivatives as Histone Deacetylase inhibitors and cytotoxic agents. Bioorganic Chemistry, 57, 65–82. https://doi.org/10.1016/j.bioorg.2014.08.006
  • Albani, D., Polito, L., & Forloni, G. (2010). Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders: Experimental and genetic evidence. Journal of Alzheimer's Disease: JAD, 19(1), 11–26. https://doi.org/10.3233/JAD-2010-1215
  • Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2017). Predictions of ligand selectivity from absolute binding free energy calculations. Journal of the American Chemical Society, 139(2), 946–957. https://doi.org/10.1021/jacs.6b11467
  • Al-Sanea, M. M., Gotina, L., Mohamed, M. F. A., Parambi, D. G. T., Gomaa, H. A. M., Mathew, B., Youssif, B. G. M., Alharbi, K. S., Elsayed, Z. M., Abdelgawad, M. A., & Eldehna, W. M. (2020). Design, synthesis and biological evaluation of new HDAC1 and HDAC2 inhibitors endowed with ligustrazine as a novel cap moiety. Drug Design, Development and Therapy, 14, 497–508. https://doi.org/10.2147/DDDT.S237957
  • Anh, D. T., Hai, P. T., Huong, L. T. T., Park, E. J., Jun, H. W., Kang, J. S., Kwon, J. H., Dung, D. T. M., Anh, V. T., Hue, V. T. M., Han, S. B., & Nam, N. H. (2020). Exploration of certain 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorganic Chemistry, 101(June), 103988. https://doi.org/10.1016/j.bioorg.2020.103988
  • Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., & Schapira, M. (2012). Epigenetic protein families: A new frontier for drug discovery. Nature Reviews Drug Discovery, 11(5), 384–400. https://doi.org/10.1038/nrd3674
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhaumik, S. R., Smith, E., & Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nature Structural & Molecular Biology, 14(11), 1008–1016. https://doi.org/10.1038/nsmb1337
  • Bieliauskas, A. V., & Pflum, M. K. H. (2008). Isoform-selective histone deacetylase inhibitors. Chemical Society Reviews, 37(7), 1402–1413. https://doi.org/10.1039/b703830p
  • Böhm, H. J., & Schneider, G. (2003). Protein‐ligand interactions. In H.‐J. Böhm & G. Schneider (Eds.), Protein-ligand interactions: From molecular recognition to drug design. Wiley. https://doi.org/10.1002/3527601813
  • Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews Drug Discovery, 5(9), 769–784. https://doi.org/10.1038/nrd2133
  • Bressi, J. C., Jennings, A. J., Skene, R., Wu, Y., Melkus, R., De Jong, R., O’Connell, S., Grimshaw, C. E., Navre, M., & Gangloff, A. R. (2010). Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorganic & Medicinal Chemistry Letters, 20(10), 3142–3145. https://doi.org/10.1016/j.bmcl.2010.03.091
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chen, Y. C. (2015). Beware of docking!. Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001
  • Chou, C. J., Herman, D., & Gottesfeld, J. M. (2008). Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. The Journal of Biological Chemistry, 283(51), 35402–35409. https://doi.org/10.1074/jbc.M807045200
  • Choubey, S. K., & Jeyakanthan, J. (2018). Molecular dynamics and quantum chemistry-based approaches to identify isoform selective HDAC2 inhibitor - a novel target to prevent Alzheimer's disease. Journal of Receptor and Signal Transduction Research, 38(3), 266–278. https://doi.org/10.1080/10799893.2018.1476541
  • Cohen, I., Poręba, E., Kamieniarz, K., & Schneider, R. (2011). Histone modifiers in cancer: Friends or foes? Genes & Cancer, 2(6), 631–647. https://doi.org/10.1177/1947601911417176
  • Coordinators, N. R. (2017). Database resources of the national center for biotechnology information. Nucleic Acids Research, 45(D1), D12–D17. https://doi.org/10.1093/nar/gkw1071
  • Cournia, Z., Allen, B., & Sherman, W. (2017). Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. Journal of Chemical Information and Modeling, 57(12), 2911–2937. https://doi.org/10.1021/acs.jcim.7b00564
  • Daniel, L., Gotsbacher, M. P., Richardson-Sanchez, T., Tieu, W., & Codd, R. (2019). Exploring hydroxamic acid inhibitors of HDAC1 and HDAC2 using small molecule tools and molecular or homology modelling. Bioorganic & Medicinal Chemistry Letters, 29(18), 2581–2586. https://doi.org/10.1016/j.bmcl.2019.08.002
  • de Ruijter, A. J. M., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. P. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. The Biochemical Journal, 370(Pt 3), 737–749. https://doi.org/10.1042/BJ20021321
  • Deschamps, N., Simões-Pires, C. A., Carrupt, P. A., & Nurisso, A. (2015). How the flexibility of human histone deacetylases influences ligand binding: An overview. Drug Discovery Today, 20(6), 736–742. https://doi.org/10.1016/j.drudis.2015.01.004
  • Dewaker, V., Srivastava, A. K., Arora, A., & Prabhakar, Y. S. (2020a). Investigation of HDAC8-ligands’ intermolecular forces through molecular dynamics simulations: Profiling of non-bonding energies to design potential compounds as new anti-cancer agents. Journal of Biomolecular Structure & Dynamics, 1–26. https://doi.org/10.1080/07391102.2020.1780940
  • Dewaker, V., Srivastava, P. N., Verma, S., & Prabhakar, Y. S. (2020b). Molecular dynamics study of HDAC8-largazole analogues co-crystals for designing potential anticancer compounds. Journal of Biomolecular Structure & Dynamics, 38(4), 1197–1213. https://doi.org/10.1080/07391102.2019.1598497
  • Di Gennaro, E., Bruzzese, F., Caraglia, M., Abruzzese, A., & Budillon, A. (2004). Acetylation of proteins as novel target for antitumor therapy: Review article. Amino Acids, 26(4), 435–441. https://doi.org/10.1007/s00726-004-0087-3
  • Drummond, D. C., Noble, C. O., Kirpotin, D. B., Guo, Z., Scott, G. K., & Benz, C. C. (2005). Clinical development of histone deacetylase inhibitors as anticancer agents. Annual Review of Pharmacology and Toxicology, 45(1), 495–528. https://doi.org/10.1146/annurev.pharmtox.45.120403.095825
  • Du, Y., Tang, G., & Yuan, W. (2020). Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HG‐induced NRK‐52E cells. International Journal of Molecular Medicine, 45(1), 210–222. https://doi.org/10.3892/ijmm.2019.4397
  • Falkenberg, K. J., & Johnstone, R. W. (2014). Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nature Reviews Drug Discovery, 13(9), 673–691. https://doi.org/10.1038/nrd4360
  • Fournier, J.-F., Bhurruth-Alcor, Y., Musicki, B., Aubert, J., Aurelly, M., Bouix-Peter, C., Bouquet, K., Chantalat, L., Delorme, M., Drean, B., Duvert, G., Fleury-Bregeot, N., Gauthier, B., Grisendi, K., Harris, C. S., Hennequin, L. F., Isabet, T., Joly, F., Lafitte, G., … Tomas, L. (2018). Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous t-cell lymphoma. Bioorganic & Medicinal Chemistry Letters, 28(17), 2985–2992. https://doi.org/10.1016/j.bmcl.2018.06.029
  • Ganai, S. A. (2021). Characterizing binding intensity and energetic features of histone deacetylase inhibitor pracinostat towards class I HDAC isozymes through futuristic drug designing strategy. In Silico Pharmacology, 9(1), 18. https://doi.org/10.1007/s40203-021-00077-y. eCollection 2021
  • Ganai, S. A., Abdullah, E., Rashid, R., & Altaf, M. (2017). Combinatorial in silico strategy towards identifying potential hotspots during inhibition of structurally identical HDAC1 and HDAC2 enzymes for effective chemotherapy against neurological disorders. Frontiers in Molecular Neuroscience, 10(November), 317–357. https://doi.org/10.3389/fnmol.2017.00357
  • Ganai, S. A., Srinivasan, P., Rajamanikandan, S., Shah, B. A., Mohan, S., Gani, M., Padder, B. A., Qadri, R. A., Bhat, M. A., Baba, Z. A., & Yatoo, M. A. (2021). Delineating binding potential, stability of sulforaphane-N-acetyl-cysteine in the active site of histone deacetylase 2 and testing its cytotoxicity against distinct cancer lines through stringent molecular dynamics, DFT and cell-based assays. Chemical Biology & Drug Design, 98(3), 363–376. https://doi.org/10.1111/cbdd.13854
  • Gillette, T. G. (2021). HDAC inhibition in the heart: Erasing hidden fibrosis. In Circulation (pp. 1891–1893). Lippincott Williams & Wilkins Hagerstown. https://doi.org/10.1161/CIRCULATIONAHA.121.054262
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Suppl 2), W368–371. https://doi.org/10.1093/nar/gki464
  • Grootenhuis, P. D. J., & van Galen, P. J. M. (1995). Correlation of binding affinities with non-bonded interaction energies of thrombin-inhibitor complexes. Acta Crystallographica Section D, Biological Crystallography, 51(Pt 4), 560–566. https://doi.org/10.1107/S0907444994011686
  • Grozinger, C. M., & Schreiber, S. L. (2002). Deacetylase enzymes: Biological functions and the use of small-molecule inhibitors. Chemistry & Biology, 9(1), 3–16. https://doi.org/10.1016/S1074-5521(02)00092-3
  • Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32–42. https://doi.org/10.1038/nrg2485
  • Hassanzadeh, M., Bagherzadeh, K., & Amanlou, M. (2016). A comparative study based on docking and molecular dynamics simulations over HDAC-tubulin dual inhibitors. Journal of Molecular Graphics & Modelling, 70, 170–180. https://doi.org/10.1016/j.jmgm.2016.10.007
  • Hess-Stumpp, H. (2005). Histone deacetylase inhibitors and cancer: From cell biology to the clinic. European Journal of Cell Biology, 84(2–3), 109–121. https://doi.org/10.1016/j.ejcb.2004.12.010
  • Hieu, D. T., Anh, D. T., Hai, P. T., Thuan, N. T., Huong, L. T. T., Park, E. J., Young Ji, A., Soon Kang, J., Phuong Dung, P. T., Han, S. B., & Nam, N. H. (2019). Quinazolin-4(3H)-one-based hydroxamic acids: Design, synthesis and evaluation of histone deacetylase inhibitory effects and cytotoxicity. Chemistry and Biodiversity, 16(4), e1800502. https://doi.org/10.1002/cbdv.201800502
  • Hildmann, C., Riester, D., & Schwienhorst, A. (2007). Histone deacetylases-an important class of cellular regulators with a variety of functions. Applied Microbiology and Biotechnology, 75(3), 487–497. https://doi.org/10.1007/s00253-007-0911-2
  • Holloway, M. K., Wai, J. M., Halgren, T. A., Fitzgerald, P. M. D., Vacca, J. P., Dorsey, B. D., Levin, R. B., Thompson, W. J., Chen, L. J., deSolms, S. J., Gaffin, N., Ghosh, A. K., Giuliani, E. A., Graham, S. L., Guare, J. P., Hungate, R. W., Lyle, T. A., Sanders, W. M., Tucker, T. J., … Zugay, J. A. (1995). A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. Journal of Medicinal Chemistry, 38(2), 305–317. https://doi.org/10.1021/jm00002a012
  • Huang, B. H., Laban, M., Leung, C. H. W., Lee, L., Lee, C. K., Salto-Tellez, M., Raju, G. C., & Hooi, S. C. (2005). Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death and Differentiation, 12(4), 395–404. https://doi.org/10.1038/sj.cdd.4401567
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Johnstone, R. W. (2002). Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nature Reviews Drug Discovery, 1(4), 287–299. https://doi.org/10.1038/nrd772
  • Kalyaanamoorthy, S., & Chen, Y. P. P. (2013). Energy based pharmacophore mapping of HDAC inhibitors against class i HDAC enzymes. Biochimica et Biophysica Acta, 1834(1), 317–328. https://doi.org/10.1016/j.bbapap.2012.08.009
  • Kassem, S., Ahmed, M., El-Sheikh, S., & Barakat, K. H. (2015). Entropy in bimolecular simulations: A comprehensive review of atomic fluctuations-based methods. Journal of Molecular Graphics & Modelling, 62, 105–117. https://doi.org/10.1016/j.jmgm.2015.09.010
  • Kavianpour, P., Gemmell, M. C. M., Kahlert, J. U., & Rendina, L. M. (2020). Histone deacetylase 2 (HDAC2) inhibitors containing boron. ChemBioChem, 21(19), 2786–2791. https://doi.org/10.1002/cbic.202000131
  • Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., Qian, X., Mills, E., Berghs, S. C., Carey, N., Finn, P. W., Collins, L. S., Tumber, A., Ritchie, J. W., Jensen, P. B., Lichenstein, H. S., & Sehested, M. (2008). Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. The Biochemical Journal, 409(2), 581–589. https://doi.org/10.1042/BJ20070779
  • Khoury, G. A., Baliban, R. C., & Floudas, C. A. (2011). Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Scientific Reports, 1(1), 1–5. https://doi.org/10.1038/srep00090
  • Krämer, O. H. (2009). HDAC2: A critical factor in health and disease. Trends in Pharmacological Sciences, 30(12), 647–655. https://doi.org/10.1016/j.tips.2009.09.007
  • Kunze, M. B. A., Wright, D. W., Werbeck, N. D., Kirkpatrick, J., Coveney, P. V., & Hansen, D. F. (2013). Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8. Journal of the American Chemical Society, 135(47), 17862–17868. https://doi.org/10.1021/ja408184x
  • Lalonde, M. E., Cheng, X., & Côté, J. (2014). Histone target selection within chromatin: An exemplary case of teamwork. Genes & Development, 28(10), 1029–1041. https://doi.org/10.1101/gad.236331.113
  • Lane, A. A., & Chabner, B. A. (2009). Histone deacetylase inhibitors in cancer therapy. Journal of Clinical Oncology, 27(32), 5459–5468. https://doi.org/10.1200/JCO.2009.22.1291
  • Laubach, J. P., Moreau, P., San-Miguel, J. F., & Richardson, P. G. (2015). Panobinostat for the treatment of multiple myeloma. Clinical Cancer Research, 21(21), 4767–4773. https://doi.org/10.1158/1078-0432.CCR-15-0530
  • Lauffer, B. E. L., Mintzer, R., Fong, R., Mukund, S., Tam, C., Zilberleyb, I., Flicke, B., Ritscher, A., Fedorowicz, G., Vallero, R., Ortwine, D. F., Gunzner, J., Modrusan, Z., Neumann, L., Koth, C. M., Lupardus, P. J., Kaminker, J. S., Heise, C. E., & Steiner, P. (2013). Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. The Journal of Biological Chemistry, 288(37), 26926–26943. https://doi.org/10.1074/jbc.M113.490706
  • Lee, H. Z., Kwitkowski, V. E., Del Valle, P. L., Ricci, M. S., Saber, H., Habtemariam, B. A., Bullock, J., Bloomquist, E., Shen, Y. L., Chen, X. H., Brown, J., Mehrotra, N., Dorff, S., Charlab, R., Kane, R. C., Kaminskas, E., Justice, R., Farrell, A. T., & Pazdur, R. (2015). FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clinical Cancer Research, 21(12), 2666–2670. https://doi.org/10.1158/1078-0432.CCR-14-3119
  • Li, Z., Huang, Y., Wu, Y., Chen, J., Wu, D., Zhan, C. G., & Luo, H. B. (2019). Absolute binding free energy calculation and design of a subnanomolar inhibitor of phosphodiesterase-10. Journal of Medicinal Chemistry, 62(4), 2099–2111. https://doi.org/10.1021/acs.jmedchem.8b01763
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Liu, H., & Hou, T. (2016). CaFE: A tool for binding affinity prediction using end-point free energy methods. Bioinformatics (Oxford, England), 32(14), 2216–2218. https://doi.org/10.1093/bioinformatics/btw215
  • Lobera, M., Madauss, K. P., Pohlhaus, D. T., Wright, Q. G., Trocha, M., Schmidt, D. R., Baloglu, E., Trump, R. P., Head, M. S., Hofmann, G. A., Murray-Thompson, M., Schwartz, B., Chakravorty, S., Wu, Z., Mander, P. K., Kruidenier, L., Reid, R. A., Burkhart, W., Turunen, B. J., … Nolan, M. A. (2013). Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nature Chemical Biology, 9(5), 319–325. https://doi.org/10.1038/nchembio.1223
  • López, J. E., Sullivan, E. D., & Fierke, C. A. (2016). Metal-dependent deacetylases: Cancer and epigenetic regulators. ACS Chemical Biology, 11(3), 706–716. https://doi.org/10.1021/acschembio.5b01067
  • Lu, X., Ning, Z., Li, Z., Cao, H., & Wang, X. (2016). Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable & Rare Diseases Research, 5(3), 185–191.
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R., & Pazdur, R. (2007). FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. The Oncologist, 12(10), 1247–1252. https://doi.org/10.1634/theoncologist.12-10-1247
  • Marks, P. a., & Dokmanovic, M. (2005). Histone deacetylase inhibitors: Discovery and development as anticancer agents. Expert Opinion on Investigational Drugs, 14(12), 1497–1511. https://doi.org/10.1517/13543784.14.12.1497
  • Martínez-Pacheco, H., Espinosa-Raya, J., Picazo, O., Roldán-Roldán, G., Viñas-Bravo, O., & Ramírez-Galicia, G. (2018). Design (Docking and QSAR Studies) and synthesis of histone deacetylase 2 (HDAC2) inhibitors series. Medicinal Chemistry Research, 27(1), 206–223. https://doi.org/10.1007/s00044-017-2051-2
  • Melesina, J., Praetorius, L., Simoben, C. V., Robaa, D., & Sippl, W. (2018). Design of selective histone deacetylase inhibitors: Rethinking classical pharmacophore. Future Medicinal Chemistry, 10(13), 1537–1540. https://doi.org/10.4155/fmc-2018-0125
  • Methot, J. L., Chakravarty, P. K., Chenard, M., Close, J., Cruz, J. C., Dahlberg, W. K., Fleming, J., Hamblett, C. L., Hamill, J. E., Harrington, P., Harsch, A., Heidebrecht, R., Hughes, B., Jung, J., Kenific, C. M., Kral, A. M., Meinke, P. T., Middleton, R. E., Ozerova, N., … Miller, T. A. (2008a). Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorganic & Medicinal Chemistry Letters, 18(3), 973–978. https://doi.org/10.1016/j.bmcl.2007.12.031
  • Methot, J. L., Hamblett, C. L., Mampreian, D. M., Jung, J., Harsch, A., Szewczak, A. A., Dahlberg, W. K., Middleton, R. E., Hughes, B., Fleming, J. C., Wang, H., Kral, A. M., Ozerova, N., Cruz, J. C., Haines, B., Chenard, M., Kenific, C. M., Secrist, J. P., & Miller, T. A. (2008b). SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorganic & Medicinal Chemistry Letters, 18(23), 6104–6109. https://doi.org/10.1016/j.bmcl.2008.10.052
  • Methot, J. L., Hoffman, D. M., Witter, D. J., Stanton, M. G., Harrington, P., Hamblett, C., Siliphaivanh, P., Wilson, K., Hubbs, J., Heidebrecht, R., Kral, A. M., Ozerova, N., Fleming, J. C., Wang, H., Szewczak, A. A., Middleton, R. E., Hughes, B., Cruz, J. C., Haines, B. B., … Miller, T. A. (2014). Delayed and prolonged histone hyperacetylation with a selective HDAC1/HDAC2 inhibitor. ACS Medicinal Chemistry Letters, 5(4), 340–345. https://doi.org/10.1021/ml4004233
  • Micelli, C., & Rastelli, G. (2015). Histone deacetylases: Structural determinants of inhibitor selectivity. Drug Discovery Today, 20(6), 718–735. https://doi.org/10.1016/j.drudis.2015.01.007
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mohamed, M. F. A., Youssif, B. G. M., Shaykoon, M. S. A., Abdelrahman, M. H., Elsadek, B. E. M., Aboraia, A. S., & Abuo-Rahma, G. E. D. A. (2019). Utilization of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinone as a cap moiety in design of novel histone deacetylase inhibitors. Bioorganic Chemistry, 91(December 2018), 103127. https://doi.org/10.1016/j.bioorg.2019.103127
  • Molecular Operating Environment (MOE). (n.d.). Version 2008. Chemical Computing Group Inc. http://www.chemcomp.com.
  • Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules (Basel, Switzerland), 20(3), 3898–3941. https://doi.org/10.3390/molecules20033898
  • Nair, S. S., & Kumar, R. (2012). Chromatin remodeling in Cancer: A gateway to regulate gene transcription. Molecular Oncology, 6(6), 611–619. https://doi.org/10.1016/j.molonc.2012.09.005
  • Ning, C., Bi, Y., He, Y., Huang, W., Liu, L., Li, Y., Zhang, S., Liu, X., & Yu, N. (2013). Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(23), 6432–6435. https://doi.org/10.1016/j.bmcl.2013.09.051
  • Ouaïssi, M., Giger, U., Sielezneff, I., Pirrò, N., Sastre, B., & Ouaissi, A. (2011). Rationale for possible targeting of histone deacetylase signaling in cancer diseases with a special reference to pancreatic cancer. Journal of Biomedicine & Biotechnology, 2011, 315939. https://doi.org/10.1155/2011/315939
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pham-The, H., Casañola-Martin, G., Diéguez-Santana, K., Nguyen-Hai, N., Ngoc, N. T., Vu-Duc, L., & Le-Thi-Thu, H. (2017). Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries. SAR and QSAR in Environmental Research, 28(3), 199–220. https://doi.org/10.1080/1062936X.2017.1294198
  • Phillips, J., Hardy, D., Isgro, T., Phillips, J., Villa, E., Yu, H., Tanner, D., Liu, Y., Wu, Z., & Hardy, D. (2017). Namd Tutorial. April, 1–120.
  • Qi, Z., Wang, C., Jiang, J., & Wu, C. (2018). Novel C15 triene triazole, D-A derivatives anti-HepG2, and as HDAC2 inhibitors: A synergy study. International Journal of Molecular Sciences, 19(10), 3184. https://doi.org/10.3390/ijms19103184
  • Qin, H. T., Li, H. Q., & Liu, F. (2017). Selective histone deacetylase small molecule inhibitors: Recent progress and perspectives. Expert Opinion on Therapeutic Patents, 27(5), 621–636. https://doi.org/10.1080/13543776.2017.1276565
  • Quintás-Cardama, A., Kantarjian, H., Estrov, Z., Borthakur, G., Cortes, J., & Verstovsek, S. (2012). Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leukemia Research, 36(9), 1124–1127. https://doi.org/10.1016/j.leukres.2012.03.003
  • Reddy, D. N., Ballante, F., Chuang, T., Pirolli, A., Marrocco, B., & Marshall, G. R. (2016). Design and synthesis of simplified largazole analogues as isoform-selective human lysine deacetylase inhibitors. Journal of Medicinal Chemistry, 59(4), 1613–1633. https://doi.org/10.1021/acs.jmedchem.5b01632
  • Rikimaru, T., Taketomi, A., Yamashita, Y. I., Shirabe, K., Hamatsu, T., Shimada, M., & Maehara, Y. (2007). Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology, 72(1–2), 69–74. https://doi.org/10.1159/000111106
  • Ropero, S., & Esteller, M. (2007). The role of histone deacetylases (HDACs) in human cancer. Molecular Oncology, 1(1), 19–25. https://doi.org/10.1016/j.molonc.2007.01.001
  • Schroeder, F. A., Chonde, D. B., Riley, M. M., Moseley, C. K., Granda, M. L., Wilson, C. M., Wagner, F. F., Zhang, Y. L., Gale, J., Holson, E. B., Haggarty, S. J., & Hooker, J. M. (2013). FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors. Neuroscience Letters, 550, 119–124. https://doi.org/10.1016/j.neulet.2013.06.016
  • Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Review of Biochemistry, 76(1), 75–100. https://doi.org/10.1146/annurev.biochem.76.052705.162114
  • Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36. https://doi.org/10.1093/carcin/bgp220
  • Simone, C., & Peserico, A. (2011). Physical and functional HAT/HDAC interplay regulates protein acetylation balance. Journal of Biomedicine & Biotechnology, 2011(Table 1), 371832. https://doi.org/10.1155/2011/371832
  • Singh, N., & Li, W. (2020). Absolute binding free energy calculations for highly flexible protein MDM2 and its inhibitors. International Journal of Molecular Sciences, 21(13), 4765–4715. https://doi.org/10.3390/ijms21134765
  • Sixto-López, Y., Bello, M., & Correa-Basurto, J. (2019). Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking. Journal of Biomolecular Structure & Dynamics, 37(3), 584–610. https://doi.org/10.1080/07391102.2018.1441072
  • Song, J., Noh, J. H., Lee, J. H., Eun, J. W., Ahn, Y. M., Kim, S. Y., Hyung Lee, S., Park, W. S., Yoo, N. J., Lee, J. Y., & Nam, S. W. (2005). Increased expression of histone deacetylase 2 is found in human gastric cancer. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 113(4), 264–268. https://doi.org/10.1111/j.1600-0463.2005.apm_04.x
  • Spange, S., Wagner, T., Heinzel, T., & Krämer, O. H. (2009). Acetylation of non-histone proteins modulates cellular signalling at multiple levels. The International Journal of Biochemistry & Cell Biology, 41(1), 185–198. https://doi.org/10.1016/j.biocel.2008.08.027
  • Sterner, D. E., & Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews, 64(2), 435–459. https://doi.org/10.1128/mmbr.64.2.435-459.2000
  • Stoddard, S. V., May, X. A., Rivas, F., Dodson, K., Vijayan, S., Adhika, S., Parker, K., & Watkins, D. L. (2019). Design of potent panobinostat histone deacetylase inhibitor derivatives: Molecular considerations for enhanced isozyme selectivity between HDAC2 and HDAC8. Molecular Informatics, 38(3), 1800080–1800089. https://doi.org/10.1002/minf.201800080
  • Stote, R. H., & Karplus, M. (1995). Zinc binding in proteins and solution: A simple but accurate nonbonded representation. Proteins, 23(1), 12–31. https://doi.org/10.1002/prot.340230104
  • Tang, J., Yan, H., & Zhuang, S. (2013). Histone deacetylases as targets for treatment of multiple diseases. Clinical Science (London, England: 1979), 124(11), 651–662. https://doi.org/10.1042/CS20120504
  • Tilekar, K., Upadhyay, N., Jänsch, N., Schweipert, M., Mrowka, P., Meyer-Almes, F. J., & Ramaa, C. S. (2020). Discovery of 5-naphthylidene-2,4-thiazolidinedione derivatives as selective HDAC8 inhibitors and evaluation of their cytotoxic effects in leukemic cell lines. Bioorganic Chemistry, 95(October 2019), 103522. https://doi.org/10.1016/j.bioorg.2019.103522
  • Trot, O., & Olson, A. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc
  • VanderMolen, K. M., McCulloch, W., Pearce, C. J., & Oberlies, N. H. (2011). Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. The Journal of Antibiotics, 64(8), 525–531. https://doi.org/10.1038/ja.2011.35
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc
  • Vanommeslaeghe, K., & MacKerell, A. D. (2012). Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. https://doi.org/10.1021/ci300363c
  • Vanommeslaeghe, K., Raman, E. P., & MacKerell, A. D. (2012). Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling, 52(12), 3155–3168. https://doi.org/10.1021/ci3003649
  • Wagner, F. F., Weïwer, M., Steinbacher, S., Schomburg, A., Reinemer, P., Gale, J. P., Campbell, A. J., Fisher, S. L., Zhao, W. N., Reis, S. A., Hennig, K. M., Thomas, M., Müller, P., Jefson, M. R., Fass, D. M., Haggarty, S. J., Zhang, Y. L., & Holson, E. B. (2016). Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorganic & Medicinal Chemistry, 24(18), 4008–4015. https://doi.org/10.1016/j.bmc.2016.06.040
  • Wagner, F. F., Zhang, Y.-L., Fass, D. M., Joseph, N., Gale, J. P., Weïwer, M., McCarren, P., Fisher, S. L., Kaya, T., Zhao, W.-N., Reis, S. A., Hennig, K. M., Thomas, M., Lemercier, B. C., Lewis, M. C., Guan, J. S., Moyer, M. P., Scolnick, E., Haggarty, S. J., Tsai, L.-H., & Holson, E. B. (2015). Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chemical Science, 6(1), 804–815. https://doi.org/10.1039/C4SC02130D
  • Wang, G. G., Allis, C. D., & Chi, P. (2007). Chromatin remodeling and cancer, part I: Covalent histone modifications. Trends in Molecular Medicine, 13(9), 363–372. https://doi.org/10.1016/j.molmed.2007.07.003
  • Wilson, A. J., Byun, D.-S., Popova, N., Murray, L. B., L'Italien, K., Sowa, Y., Arango, D., Velcich, A., Augenlicht, L. H., & Mariadason, J. M. (2006). Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. The Journal of Biological Chemistry, 281(19), 13548–13558. https://doi.org/10.1074/jbc.M510023200
  • Xu, Z., Yang, Y., Mai, X., Liu, B., Xiong, Y., Feng, L., Liao, Y., Zhang, Y., Wang, H., Ouyang, L., & Liu, S. (2018). Syntheses and biological evaluation of novel hydroxamic acid derivatives containing purine moiety as histone deacetylase inhibitors. Chemical & Pharmaceutical Bulletin, 66(4), 439–451. https://doi.org/10.1248/cpb.c17-00997
  • Yu, Z., Li, P., & Merz, K. M. (2018). Extended zinc AMBER force field (EZAFF). Journal of Chemical Theory and Computation, 14(1), 242–254. https://doi.org/10.1021/acs.jctc.7b00773
  • Zhou, H., Wang, C., Ye, J., Chen, H., & Tao, R. (2017). Design, virtual screening, molecular docking and molecular dynamics studies of novel urushiol derivatives as potential HDAC2 selective inhibitors. Gene, 637(August), 63–71. https://doi.org/10.1016/j.gene.2017.09.034
  • Zhu, P., Martin, E., Mengwasser, J., Schlag, P., Janssen, K. P., & Göttlicher, M. (2004). Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell, 5(5), 455–463. https://doi.org/10.1016/S1535-6108(04)00114-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.