223
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fluorinated dihydropyridines as candidates to block L-type voltage-dependent calcium channels

, &
Pages 13456-13471 | Received 09 Aug 2021, Accepted 27 Sep 2021, Published online: 01 Nov 2021

References

  • Abraham, M. J., van der Spoel, D., & Lindahl, E. H. B. (n.d.). The GROMACS Development Team. GROMACS user manual 2019. www.gromacs.org
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Apps, D. K. (1992). Ionic channels of excitable membranes (second edition). FEBS Letters, 306(2–3), 277–278. https://doi.org/10.1016/0014-5793(92)81020-M
  • Barigye, S. J., Duarte, M. H., Nunes, C. A., & Freitas, M. P. (2016). MIA-plot: A graphical tool for viewing descriptor contributions in MIA-QSAR. RSC Advances, 6(55), 49604–49612. https://doi.org/10.1039/C6RA09593C
  • Barigye, S. J., & Puggina de Freitas, M. (2016). Ten Years of the MIA-QSAR Strategy. International Journal of Quantitative Structure-Property Relationships, 1(1), 64–77. https://doi.org/10.4018/IJQSPR.2016010103
  • Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Silva, A. D., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Castro, L. G., … Zhang, J. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Boto, R. Á., Peccati, F., Laplaza, R., Quan, C., Carbone, A., Piquemal, J.-P., Maday, Y., & Contreras-Garcia, J. (2020). NCIPLOT4: Fast, robust and quantitative analysis of noncovalent interactions. Journal of Chemical Theory and Computation, 16(7), 4150–4158. https://doi.org/10.1021/acs.jctc.0c00063
  • Bowers, K. J., Sacerdoti, F. D., Salmon, J. K., Shan, Y., Shaw, D. E., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., & Moraes, M. A. (2006). Molecular dynamics: Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing - SC, 6, 84. https://doi.org/10.1145/1188455.1188544
  • Catterall, W. A. (2011). Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947. https://doi.org/10.1101/cshperspect.a003947
  • Consonni, V., Ballabio, D., & Todeschini, R. (2009). Comments on the definition of the Q 2 parameter for QSAR validation. Journal of Chemical Information and Modeling, 49(7), 1669–1678. https://doi.org/10.1021/ci900115y
  • Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A program for plotting non-covalent interaction regions. Journal of Chemical Theory and Computation, 7(3), 625–632. https://doi.org/10.1021/ct100641a
  • Cosconati, S., Marinelli, L., Lavecchia, A., & Novellino, E. (2007). Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations. Journal of Medicinal Chemistry, 50(7), 1504–1513. https://doi.org/10.1021/jm061245a
  • da Mota, E. G., Silva, D. G., Guimarães, M. C., da Cunha, E. F. F., & Freitas, M. P. (2014). Computer-assisted design of novel 1,4-dihydropyridine calcium channel blockers. Molecular Simulation, 40(12), 959–965. https://doi.org/10.1080/08927022.2013.829220
  • Dennington, R. D., Keith, T. A., & Millam, M. J. (2008). GaussView 5.0. Gaussian.
  • Dolphin, A. C. (2012). Calcium channel auxiliary α2δ and β subunits: Trafficking and one step beyond. Nature Reviews. Neuroscience, 13(8), 542–555. https://doi.org/10.1038/nrn3311
  • Dong, F.-W., Jiang, H.-H., Yang, L., Gong, Y., Zi, C.-T., Yang, D., Ye, C.-J., Li, H., Yang, J., Nian, Y., Zhou, J., & Hu, J.-M. (2018). Valepotriates from the roots and rhizomes of Valeriana jatamansi jones as novel N-type calcium channel antagonists. Frontiers in Pharmacology, 9, 885. https://doi.org/10.3389/fphar.2018.00885
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
  • Fleckenstein, A. (1983). History of calcium antagonists. Circulation Research, 52(2 Pt 2), I3–16. http://www.ncbi.nlm.nih.gov/pubmed/6339106
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today, 22(2), 249–269. https://doi.org/10.1016/j.drudis.2016.11.001
  • Hay, M., Thomas, D. W., Craighead, J. L., Economides, C., & Rosenthal, J. (2014). Clinical development success rates for investigational drugs. Nature Biotechnology, 32(1), 40–51. https://doi.org/10.1038/nbt.2786
  • Heo, L., & Feig, M. (2018). Experimental accuracy in protein structure refinement via molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 115(52), 13276–13281. https://doi.org/10.1073/pnas.1811364115
  • Huang, S., Feng, K., & Ren, Y. (2019). Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques. MedChemComm, 10(1), 101–115. https://doi.org/10.1039/c8md00375k
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/S0022-2836(02)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function and Genetics, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Kane, S. P. (n.d.). ClinCalc DrugStats Database, Version 20.1.
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuwabara, J., Sawada, Y., & Yoshimatsu, M. (2018). Copper-mediated reactions of nitriles with nitromethanes: Aza-Henry reactions and nitrile hydrations. Organic Letters, 20(4), 1130–1133. https://doi.org/10.1021/acs.orglett.8b00058
  • Langley, M. S., & Sorkin, E. M. (1989). Nimodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs, 37(5), 669–699. https://doi.org/10.2165/00003495-198937050-00004
  • LigPrep, S. R. (2021). Schrödinger Release 2021-1: LigPrep. Schrödinger, LLC.
  • Loev, B., & Snader, K. M. (1965). The Hantzsch reaction. I. Oxidative dealkylation of certain dihydropyridines. The Journal of Organic Chemistry, 30(6), 1914–1916. https://doi.org/10.1021/jo01017a048
  • Madden, T. L., Tatusov, R. L., & Zhang, J. (1996). Applications of network BLAST server. Computer methods for macromolecular sequence analysis. Methods in Enzymology, 266, 131–141.
  • Marchalín, Š., Cvopová, K., Križ, M., Baran, P., Oulyadi, H., & Daïch, A. (2004). New resolution of 2-formyl-1,4-DHP derivatives using CIDR methodology. Facile access to new chiral tricyclic thiolactam. The Journal of Organic Chemistry, 69(12), 4227–4237. https://doi.org/10.1021/jo049706s
  • Marco-Contelles, J., León, R., De Los Ríos, C., Guglietta, A., Terencio, J., Lòpez, M. G., Garcìa, A. G., & Villarroya, M. (2006). Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer's disease. Journal of Medicinal Chemistry, 49(26), 7607–7610. https://doi.org/10.1021/jm061047j
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), 1–10. https://doi.org/10.1371/journal.pone.0119264
  • McGivern, J. G. (2006). Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discovery Today, 11(5–6), 245–253. https://doi.org/10.1016/S1359-6446(05)03662-7
  • Mitkin, O. D., Kombarov, R. V., & Yurovskaya, M. A. (2001). Indoles from 3-nitropyridinium salts: 1 an extension of the transformation method on 5-substituted indoles. Tetrahedron, 57(9), 1827–1831. https://doi.org/10.1016/S0040-4020(00)01162-5
  • Mitra, I., Saha, A., & Roy, K. (2010). Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Molecular Simulation, 36(13), 1067–1079. https://doi.org/10.1080/08927022.2010.503326
  • Miyashita, Y., Furukawa, T., Kamegaya, E., Yoshii, M., & Nukada, T. (2010). A region of N-type Ca(2+) channel critical for blockade by the dihydropyridine amlodipine. European Journal of Pharmacology, 632(1–3), 14–22. https://doi.org/10.1016/j.ejphar.2010.01.006
  • Mungalpara, J., Pandey, A., Jain, V., & Mohan, C. G. (2010). Molecular modelling and QSAR analysis of some structurally diverse N-type calcium channel blockers. Journal of Molecular Modeling, 16(4), 629–644. https://doi.org/10.1007/s00894-009-0591-1
  • Nirenberg, V. A., & Yifrach, O. (2020). Bridging the molecular-cellular gap in understanding ion channel clustering. Frontiers in Pharmacology, 10, 1644. https://doi.org/10.3389/fphar.2019.01644
  • Nunes, C. A., Freitas, M. P., Pinheiro, A. C. M., & Bastos, S. C. (2012). Chemoface: A novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, 23(11), 2003–2010. https://doi.org/10.1590/S0103-50532012005000073
  • O’hagan, D. (2008). Understanding organofluorine chemistry. An introduction to the C–F bond. Chemical Society Reviews, 37(2), 308–319. https://doi.org/10.1039/b711844a
  • Pandey, A. P., J., Tripathi, S., & Gopi Mohan, C. (2012). Harnessing human N-type Ca(2+) channel receptor by identifying the atomic hotspot regions for its structure-based blocker design. Molecular Informatics, 31(9), 643–657. https://doi.org/10.1002/minf.201200025
  • Pryadeina, M. V., Kuzueva, O. G., Burgart, Y. V., Saloutin, V. I., Lyssenko, K. A., & Antipin, M. Y. (2002). Reactions of fluorine-containing 3-oxo esters with aldehydes. Journal of Fluorine Chemistry, 117(1), 1–7. https://doi.org/10.1016/S0022-1139(02)00149-5
  • Ribeiro, A. A. S. T., Horta, B. A. C., & De Alencastro, R. B. (2008). MKTOP: A program for automatic construction of molecular topologies. Journal of the Brazilian Chemical Society, 19(7), 1433–1435. https://doi.org/10.1590/S0103-50532008000700031
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLSAA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Roy, K., Chakraborty, P., Mitra, I., Ojha, P. K., Kar, S., & Das, R. N. (2013). Some case studies on application of "r(m)2" metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. Journal of Computational Chemistry, 34(12), 1071–1082. https://doi.org/10.1002/jcc.23231
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, 22–29. https://doi.org/10.1016/j.chemolab.2015.04.013
  • Santa-Helena, E., Cabrera, D. C., D’Oca, M. G. M., Scaini, J. L. R., de Oliveira, M. W. B., Werhli, A. V., Machado, K. d S., Gonçalves, C. A. N., & Nery, L. E. M. (2020). Long-chain fatty dihydropyridines: Docking calcium channel studies and antihypertensive activity. Life Sciences, 259, 118210. https://doi.org/10.1016/j.lfs.2020.118210
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Scholz, H. (1997). Pharmacological aspects of calcium channel blockers. Cardiovascular Drugs and Therapy, 10(S3), 869–872. https://doi.org/10.1007/BF00051613
  • Schrödinger Release. (2021). No Title (Prime, Schrödinger, LLC).
  • Shahbaaz, M., Nkaule, A., & Christoffels, A. (2019). Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-40621-7
  • Sharma, V. K., & Singh, S. K. (2017). Synthesis, utility and medicinal importance of 1,2- & 1,4-dihydropyridines. RSC Advances, 7(5), 2682–2732. https://doi.org/10.1039/C6RA24823C
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shen, L., Cao, S., Wu, J., Zhang, J., Li, H., Liu, N., & Qian, X. (2009). A revisit to the Hantzsch reaction: Unexpected products beyond 1,4-dihydropyridines. Green Chemistry, 11(9), 1414. https://doi.org/10.1039/b906358g
  • Shinada, N. K., de Brevern, A. G., & Schmidtke, P. (2019). Halogens in protein-ligand binding mechanism: A structural perspective. Journal of Medicinal Chemistry, 62(21), 9341–9356. https://doi.org/10.1021/acs.jmedchem.8b01453
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367–368. https://doi.org/10.1186/1756-0500-5-367
  • Stradyn’, Y., Gavars, R., Baumane, L., Vigante, B., & Duburs, G. (1993). Free radicals in the electrochemical reduction of certain mononitro and dinitro derivatives of pyridine. Chemistry of Heterocyclic Compounds, 29(8), 918–925. https://doi.org/10.1007/BF00534270
  • Swope, W. C., Andersen, H. C., Berens, P. H., Wilson, K. R., Swope, W. C., Andersen, H. C., Berens, P. H., & Wilson, K. R. (1982). A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. Journal of Chemistry and Physics, 76, 637. https://doi.org/10.1063/1.442716
  • Teleb, M., Rizk, O. H., Zhang, F.-X., Fronczek, F. R., Zamponi, G. W., & Fahmy, H. (2019). Design, synthesis and pharmacological evaluation of some substituted dihydropyrimidines with L-/T-type calcium channel blocking activities. Bioorganic Chemistry, 83, 354–366. https://doi.org/10.1016/j.bioorg.2018.10.054
  • Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29(6–7), 476–488. https://doi.org/10.1002/minf.201000061
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2020). Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1806927
  • Vardanyan, R., & Hruby, V. (2006). Synthesis of essential drugs (1st ed.). Elsevier.
  • Walker, A. R., Bonomi, R., Popov, V., Gelovani, J. G., & Andrés Cisneros, G. (2017). Investigating carbohydrate based ligands for galectin-3 with docking and molecular dynamics studies. Journal of Molecular Graphics and Modelling, 71, 211–217. https://doi.org/10.1016/j.jmgm.2016.10.018
  • Wang, X., Saegusa, H., Huntula, S., & Tanabe, T. (2019). Blockade of microglial Cav1.2 Ca2+ channel exacerbates the symptoms in a Parkinson’s disease model. Scientific Reports, 9(1), 9138. https://doi.org/10.1038/s41598-019-45681-3
  • Wasan, E. K., Zhao, J., Poteet, J., Mohammed, M. A., Syeda, J., Soulsbury, K., Cawthray, J., Bunyamin, A., Zhang, C., Fahlman, B. M., & Krol, E. S. (2019). Development of a UV-stabilized topical formulation of nifedipine for the treatment of raynaud phenomenon and chilblains. Pharmaceutics, 11(11), 594. https://doi.org/10.3390/pharmaceutics11110594
  • Wu, J., Yan, Z., Li, Z., Qian, X., Lu, S., Dong, M., Zhou, Q., & Yan, N. (2016). Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution. Nature, 537(7619), 191–196. https://doi.org/10.1038/nature19321

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.