211
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Development of homology model, docking protocol and Machine-Learning based scoring functions for identification of Equus caballus’s butyrylcholinesterase inhibitors

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 13693-13710 | Received 30 Apr 2021, Accepted 09 Oct 2021, Published online: 25 Oct 2021

References

  • Abeln, S., K. A. Feenstra, and J. Heringa. (2019). Protein three-dimensional structure prediction. In S. Ranganathan (Eds.), Encyclopedia of bioinformatics and computational biology (pp. 497–511). Academic Press.
  • Albalate, A., & Minker, W. (2013). Semi-supervised and unsupervised machine learning: novel strategies. John Wiley & Sons.
  • Baker, N. APBS-PDB2PQR Documentation. (2020).
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), W252–W258. https://doi.org/10.1093/nar/gku340
  • Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3), 542–542. https://doi.org/10.1109/TNN.2009.2015974
  • Chatterjee, S., & Hadi, A. S. (2013). Regression analysis by example. John Wiley & Sons.
  • Consortium, U. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32(Web Server issue), W665–W667. https://doi.org/10.1093/nar/gkh381
  • Dunbrack, R. L. (2002). Rotamer libraries in the 21st century. Current Opinion in Structural Biology, 12(4), 431–440. https://doi.org/10.1016/S0959-440X(02)00344-5
  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22. https://doi.org/10.18637/jss.v033.i01
  • Ganeshpurkar, A. (2020). Computational binding study with α7 nicotinic acetylcholine receptor of Anvylic-3288: An allosteric modulator. Molecular Simulation, 46(13), 975–986. https://doi.org/10.1080/08927022.2020.1795166
  • Ganeshpurkar, A. (2021). Improved machine learning scoring functions for identification of Electrophorus electricus’s acetylcholinesterase inhibitors. Molecular Diversity, 1–25. https://doi.org/10.1007/s11030-021-10280-w
  • Ganeshpurkar, A., Kumar, D., & Singh, S. K. (2018). Design, synthesis and collagenase inhibitory activity of some novel phenylglycine derivatives as metalloproteinase inhibitors. International Journal of Biological Macromolecules, 107(Pt B), 1491–1500. https://doi.org/10.1016/j.ijbiomac.2017.10.008
  • Ganeshpurkar, A., Singh, R., Gore, P. G., Kumar, D., Gutti, G., Kumar, A., & Singh, S. K. (2020). Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. Molecular Simulation, 46(3), 169–185. https://doi.org/10.1080/08927022.2019.1682572
  • Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44(D1), D1045–D1053. https://doi.org/10.1093/nar/gkv1072
  • Goldberger, J. (2004). Neighbourhood components analysis. Advances in Neural Information Processing Systems, 17, 1-8.
  • Hackeling, G. (2017). Mastering machine learning with scikit-learn. Packt Publishing Ltd.
  • Hastie, T., Tibshirani, r., & Friedman, J. (2009). The elements of statistical learning. Data mining, inference, and prediction. 2008. Springer.
  • Huang, S.-Y., Grinter, S. Z., & Zou, X. (2010). Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions. Physical Chemistry Chemical Physics : PCCP, 12(40), 12899–12908. https://doi.org/10.1039/c0cp00151a
  • Jain, A. N., Dietterich, T. G., Lathrop, R. H., Chapman, D., Critchlow, R. E., Bauer, B. E., Webster, T. A., & Lozano-Perez, T. (1994). Compass: A shape-based machine learning tool for drug design. Journal of Computer-Aided Molecular Design, 8(6), 635–652. https://doi.org/10.1007/BF00124012
  • Jana, S., Ganeshpurkar, A., & Singh, S. K. (2018). Multiple 3D-QSAR modeling, e-pharmacophore, molecular docking, and in vitro study to explore novel AChE inhibitors. RSC Advances, 8(69), 39477–39495. https://doi.org/10.1039/C8RA08198K
  • King, R. D., Muggleton, S., Lewis, R. A., & Sternberg, M. J. (1992). Drug design by machine learning: The use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proceedings of the National Academy of Sciences of the United States of America, 89(23), 11322–11326. https://doi.org/10.1073/pnas.89.23.11322
  • Lee, T.-S., Cerutti, D. S., Mermelstein, D., Lin, C., LeGrand, S., Giese, T. J., Roitberg, A., Case, D. A., Walker, R. C., & York, D. M. (2018). GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features. Journal of Chemical Information and Modeling, 58(10), 2043–2050. https://doi.org/10.1021/acs.jcim.8b00462
  • Li, L., Wang, B., & Meroueh, S. O. (2011). Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. Journal of Chemical Information and Modeling, 51(9), 2132–2138. https://doi.org/10.1021/ci200078f
  • Lockridge, O., & LA Du, B. (1979). Interchain disulfide bonds and subunit organization in human serum cholinesterase.
  • Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
  • Masson, P., Carletti, E., & Nachon, F. (2009). Structure, activities and biomedical applications of human butyrylcholinesterase. Protein and Peptide Letters, 16(10), 1215–1224. https://doi.org/10.2174/092986609789071207
  • Masson, P., Legrand, P., Bartels, C. F., Froment, M. T., Schopfer, L. M., & Lockridge, O. (1997). Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry, 36(8), 2266–2277. https://doi.org/10.1021/bi962484a
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Nachon, F., Ehret-Sabatier, L., Loew, D., Colas, C., van Dorsselaer, A., & Goeldner, M. (1998). Trp82 and Tyr332 are involved in two quaternary ammonium binding domains of human butyrylcholinesterase as revealed by photoaffinity labeling with [3H]DDF. Biochemistry, 37(29), 10507–10513. https://doi.org/10.1021/bi980536l
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33–14. https://doi.org/10.1186/1758-2946-3-33
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Polikar, R. (2012). Ensemble learning. In Ensemble machine learning (pp. 1–34). Springer.
  • Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., & Honig, B. (2002). Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. Journal of Computational Chemistry, 23(1), 128–137. https://doi.org/10.1002/jcc.1161
  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative Studies on Some Metrics for External Validation of QSPR Models. Journal of Chemical Information and Modeling, 52(2), 396–408. https://doi.org/10.1021/ci200520g
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Shapovalov, M. V., & Dunbrack, R. L. Jr, (2011). A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure (London, England : 1993), 19(6), 844–858. https://doi.org/10.1016/j.str.2011.03.019
  • Singh, R., Ganeshpurkar, A., Kumar, D., Kumar, D., Kumar, A., & Singh, S. K. (2020). Identifying potential GluN2B subunit containing N-Methyl-D-aspartate receptor inhibitors: An integrative in silico and molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 38(9), 2533–2545. https://doi.org/10.1080/07391102.2019.1635530
  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • Tosco, P., Stiefl, N., & Landrum, G. (2014). Bringing the MMFF force field to the RDKit: Implementation and validation. Journal of Cheminformatics, 6(1), 37. https://doi.org/10.1186/s13321-014-0037-3
  • Umre, R., Ganeshpurkar, A., Ganeshpurkar, A., Pandey, S., Pandey, V., Shrivastava, A., & Dubey, N. (2018). In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future Journal of Pharmaceutical Sciences, 4(2), 248–253. https://doi.org/10.1016/j.fjps.2018.08.001
  • Unni, S., Huang, Y., Hanson, R. M., Tobias, M., Krishnan, S., Li, W. W., Nielsen, J. E., & Baker, N. A. (2011). Web servers and services for electrostatics calculations with APBS and PDB2PQR. Journal of Computational Chemistry, 32(7), 1488–1491. https://doi.org/10.1002/jcc.21720
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : a Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Yang, H., Sun, L., Li, W., Liu, G., & Tang, Y. (2018). In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Frontiers in Chemistry, 6, 30. https://doi.org/10.3389/fchem.2018.00030
  • Yu, Q., Holloway, H. W., Utsuki, T., Brossi, A., & Greig, N. H. (1999). Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer's disease. Journal of Medicinal Chemistry, 42(10), 1855–1861. https://doi.org/10.1021/jm980459s
  • Zhang, H. (2004). The optimality of naive Bayes. In 3rd Internation Symposium on Instrumentation Science and Technology, 1(2), 3.
  • Zou, X., Sun, Y., & Kuntz, I. D. (1999). Inclusion of solvation in ligand binding free energy calculations using the generalized-born model. Journal of the American Chemical Society, 121(35), 8033–8043. https://doi.org/10.1021/ja984102p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.