227
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular recognition of two bioactive coumarin derivatives 7-hydroxycoumarin and 4-methyl-7-hydroxycoumarin by hen egg white lysozyme: Exploring the binding mechanism, thermodynamic parameters and structural changes using multispectroscopic and computational approaches

, , , &
Pages 13872-13888 | Received 24 Sep 2021, Accepted 14 Oct 2021, Published online: 09 Nov 2021

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of Subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. https://doi.org/10.1021/ja8031289
  • Ali, M. S., & Al-Lohedan, H. A. (2020). Spectroscopic and molecular docking investigation on the noncovalent interaction of lysozyme with saffron constituent "Safranal". ACS Omega, 5(16), 9131–9141. https://doi.org/10.1021/acsomega.9b04291
  • Badley, R. A., & Teale, F. W. J. (1969). Resonance energy transfer in pepsin conjugates. Journal of Molecular Biology, 44(1), 71–88. https://doi.org/10.1016/0022-2836(69)90405-7
  • Barford, D., & Stuart, D. I. (2012). Louise N. Johnson 1940–2012. Nature Structural & Molecular Biology, 19(12), 1216–1217. https://doi.org/10.1038/nsmb.2464
  • Berendsen, H., Postma, J. P. M., van Gunsteren, W., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Eds.), Intermolecular forces. The Jerusalem Symposia on Quantum Chemistry and Biochemistry (Vol. 11, pp. 331–342). Springer.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhattacharyya, S. S., Paul, S., Mandal, S. K., Banerjee, A., Boujedaini, N., & Khuda-Bukhsh, A. R. (2009). A synthetic coumarin (4-Methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice. European Journal of Pharmacology, 614(1–3), 128–136. https://doi.org/10.1016/j.ejphar.2009.04.015
  • Biovia, D. S. (2019). Discovery Studio Visualizer, 2019. Dassault Systèmes.
  • Blake, C. C., Koenig, D. F., Mair, G. A., North, A. C., Phillips, D. C., & Sarma, V. R. (1965). Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature, 206(4986), 757–761. https://doi.org/10.1038/206757a0
  • Blake, C. C., & Swan, I. D. (1971). X-ray analysis of structure of human lysozyme at 6 A resolution. Nature: New Biology, 232(27), 12–15. https://doi.org/10.1038/newbio232012a0
  • Bortolotti, A., Wong, Y. H., Korsholm, S. S., Bahring, N. H. B., Bobone, S., Tayyab, S., van de Weert, M., & Stella, L. (2016). On the purported “backbone fluorescence” in protein three-dimensional fluorescence spectra. RSC Advances, 6(114), 112870–112876. https://doi.org/10.1039/C6RA23426G
  • Bubols, G. B., Vianna, D. d R., Medina-Remon, A., von Poser, G., Lamuela-Raventos, R. M., Eifler-Lima, V. L., & Garcia, S. C. (2013). The antioxidant activity of coumarins and flavonoids. Mini Reviews in Medicinal Chemistry, 13(3), 318–334. https://doi.org/10.2174/138955713804999775
  • Callewaert, L., & Michiels, C. W. (2010). Lysozymes in the animal kingdom. Journal of Biosciences, 35(1), 127–160. https://doi.org/10.1007/s12038-010-0015-5
  • Cao, X., He, Y., Liu, D., He, Y., Hou, X., Cheng, Y., & Liu, J. (2018). Characterization of interaction between scoparone and bovine serum albumin: Spectroscopic and molecular docking methods. RSC Advances, 8(45), 25519–25525. https://doi.org/10.1039/C8RA04065F
  • Chakraborti, S., Chatterjee, T., Joshi, P., Poddar, A., Bhattacharyya, B., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir: The ACS Journal of Surfaces and Colloids, 26(5), 3506–3513. https://doi.org/10.1021/la903118c
  • Chi, Z., & Liu, R. (2011). Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules, 12(1), 203–209. https://doi.org/10.1021/bm1011568
  • Das, S., Bora, N., Rohman, M. A., Sharma, R., Jha, A. N., & Singha Roy, A. (2018). Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Physical Chemistry Chemical Physics: PCCP, 20(33), 21668–21684. https://doi.org/10.1039/C8CP02760A
  • Das, S., Pahari, S., Sarmah, S., Rohman, M. A., Paul, D., Jana, M., & Singha Roy, A. (2019). Lysozyme-luteolin binding: Molecular insights into the complexation process and the inhibitory effects of luteolin towards protein modification. Physical Chemistry Chemical Physics: PCCP, 21(23), 12649–12666. https://doi.org/10.1039/C9CP01128E
  • Das, S., Santra, S., Rohman, M. A., Ray, M., Jana, M., & Singha Roy, A. (2019). An insight into the binding of 6-hydroxyflavone with hen egg white lysozyme: A combined approach of multi-spectroscopic and computational studies. Journal of Biomolecular Structure & Dynamics, 37(15), 4019–4034. https://doi.org/10.1080/07391102.2018.1535451
  • DeLano, W. L. (2004). The PyMoL molecular graphics system. DeLano Scientific.
  • Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen Der Physik, 437(1–2), 55–75. https://doi.org/10.1002/andp.19484370105
  • Frisch, M. J. (2009). GAUSSIAN 09, revision C.01. Gaussian Inc.
  • Garg, A., Manidhar, D. M., Gokara, M., Malleda, C., Suresh Reddy, C., & Subramanyam, R. (2013). Elucidation of the binding mechanism of coumarin derivatives with human serum albumin. PloS One, 8(5), e63805. https://doi.org/10.1371/journal.pone.0063805
  • Hazra, S., & Suresh Kumar, G. (2014). Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin. The Journal of Physical Chemistry B, 118(14), 3771–3784. https://doi.org/10.1021/jp409764z
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson − Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Hoult, J. R., & Payá, M. (1996). Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. General Pharmacology: The Vascular System, 27(4), 713–722. https://doi.org/10.1016/0306-3623(95)02112-4
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. Jr. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Ikeda, K., Hamaguchi, K., Miwa, S., & Nishina, T. (1972). Circular dichroism of human lysozyme. The Journal of Biochemistry, 71(3), 371–378. https://doi.org/10.1093/oxfordjournals.jbchem.a129778
  • Jash, C., & Suresh Kumar, G. (2014). Binding of alkaloids berberine, palmatine and coralyne to lysozyme: A combined structural and thermodynamic study. RSC Advances, 4(24), 12514–12525. https://doi.org/10.1039/c3ra46053c
  • Kanaani, A., Mir, H., Kanaani, A., & Ajloo, D. (2014). Kinetic solvent effects on the reaction between flavonoid naringenin and 2,2-diphenyl-1-picrylhydrazyl radical in different aqueous solutions of ethanol: An experimental and theoretical study. Journal of Molecular Liquids, 196, 381–391. https://doi.org/10.1016/j.molliq.2014.04.015
  • Kanimozhi, G., Prasad, N. R., Ramachandran, S., & Pugalendi, K. V. (2011). Umbelliferone modulates gamma-radiation induced reactive oxygen species generation and subsequent oxidative damage in human blood lymphocytes. European Journal of Pharmacology, 672(1–3), 20–29. https://doi.org/10.1016/j.ejphar.2011.09.003
  • Khan, M. I., Dowarha, D., Katte, R., Chou, R.-H., Filipek, A., & Yu, C. (2019). Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PloS One, 14(5), e0216427. https://doi.org/10.1371/journal.pone.0216427
  • Kielbus, M., Skalicka-Wozniak, K., Grabarska, A., Jeleniewicz, W., Dmoszynska-Graniczka, M., Marston, A., Polberg, K., Gawda, P., Klatka, J., & Stepulak, A. (2013). 7-substituted coumarins inhibit proliferation and migration of laryngeal cancer cells in vitro. Anticancer Research, 33(10), 4347–4356.
  • Kragh-Hansen, U. (1990). Structure and ligand binding properties of human serum albumin. Danish Medical Bulletin, 37(1), 57–84.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lakowicz, J. (2006). Principles of fluorescence spectroscopy (Vol. 1). Springer.
  • Lelouard, H., Henri, S., De Bovis, B., Mugnier, B., Chollat-Namy, A., Malissen, B., Méresse, S., & Gorvel, J.-P. (2010). Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme. Gastroenterology, 138(1), 173–184. https://doi.org/10.1053/j.gastro.2009.09.051
  • Li, D., Cao, X., & Ji, B. (2010). Spectrophotometric studies on the interaction between myricetin and lysozyme in the absence or presence of Cu 2 + or Fe 3. Journal of Luminescence, 130(10), 1893–1900. https://doi.org/10.1016/j.jlumin.2010.05.003
  • Liang, M., Liu, R., Qi, W., Su, R., Yu, Y., Wang, L., & He, Z. (2013). Interaction between lysozyme and procyanidin: Multilevel structural nature and effect of carbohydrates. Food Chemistry, 138(2–3), 1596–1603. https://doi.org/10.1016/j.foodchem.2012.11.027
  • Lin, H. C., Tsai, S. H., Chen, C. S., Chang, Y. C., Lee, C. M., Lai, Z. Y., & Lin, C. M. (2008). Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochemical Pharmacology, 75(6), 1416–1425. https://doi.org/10.1016/j.bcp.2007.11.023
  • Liu, J., Tian, J., He, W., Xie, J., Hu, Z., & Chen, X. (2004). Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 35(3), 671–677. https://doi.org/10.1016/j.jpba.2004.02.010
  • Liu, J., Tian, J., Tian, X., Hu, Z., & Chen, X. (2004). Interaction of isofraxidin with human serum albumin. Bioorganic & Medicinal Chemistry, 12(2), 469–474. https://doi.org/10.1016/j.bmc.2003.10.030
  • Liu, X.-H., Xi, P.-X., Chen, F.-J., Xu, Z.-H., & Zeng, Z.-Z. (2008). Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin. Journal of Photochemistry and Photobiology B: Biology, 92(2), 98–102. https://doi.org/10.1016/j.jphotobiol.2008.04.008
  • Lloyd, J. B. F. (1971). Synchronized excitation of fluorescence emission spectra. Nature Physical Science, 231(20), 64–65. https://doi.org/10.1038/physci231064a0
  • Manna, A., & Chakravorti, S. (2013). Role of block copolymer-micelle nanocomposites in dye-bovine serum albumin binding: A combined experimental and molecular docking study. Molecular bioSystems, 9(2), 246–257. https://doi.org/10.1039/c2mb25368b
  • Margineanu, A., Chan, J. J., Kelly, D. J., Warren, S. C., Flatters, D., Kumar, S., Katan, M., Dunsby, C. W., & French, P. M. W. (2016). Screening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM). Scientific Reports, 6(1), 28186. https://doi.org/10.1038/srep28186
  • Martin, R., Henningsen, R. A., Suen, A., Apparsundaram, S., Leung, B., Jia, Z., Kondru, R. K., & Milla, M. E. (2008). Kinetic and thermodynamic assessment of binding of serotonin transporter inhibitors. Journal of Pharmacology and Experimental Therapeutics, 327(3), 991–1000. https://doi.org/10.1124/jpet.108.142307
  • Matos, M. J., Santana, L., Uriarte, E., Abreu, O., Molina Pérez, E., & Yordi, E. (2015). Coumarins: An important class of phytochemicals. IntechOpen Books, pp. 113–140.
  • Matos, M. J., Vazquez-Rodriguez, S., Santana, L., Uriarte, E., Fuentes-Edfuf, C., Santos, Y., & Muñoz-Crego, A. (2013). Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial l agents. Molecules (Basel, Switzerland), 18(2), 1394–1404. https://doi.org/10.3390/molecules18021394
  • Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223–232. https://doi.org/10.1016/j.bfopcu.2017.05.001
  • Millan, S., Satish, L., Bera, K., Konar, M., & Sahoo, H. (2018). Exploring the effect of 5-Fluorouracil on conformation, stability and activity of lysozyme by combined approach of spectroscopic and theoretical studies. Journal of Photochemistry and Photobiology B: Biology, 179, 23–31. https://doi.org/10.1016/j.jphotobiol.2017.12.019
  • Millan, S., Satish, L., Bera, K., Susrisweta, B., Singh, D. V., & Sahoo, H. (2017). A spectroscopic and molecular simulation approach toward the binding affinity between lysozyme and phenazinium dyes: An effect on protein conformation. The Journal of Physical Chemistry. B, 121(7), 1475–1484. https://doi.org/10.1021/acs.jpcb.6b10991
  • Ogundele, M. O. (1998). A novel anti-inflammatory activity of lysozyme: Modulation of serum complement activation. Mediators of Inflammation, 7(5), 363–365. https://doi.org/10.1080/09629359890893
  • Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science: A Publication of the Protein Society, 4(11), 2411–2423. https://doi.org/10.1002/pro.5560041120
  • Panja, S., & Halder, M. (2016). Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences. Journal of Photochemistry and Photobiology B: Biology, 161, 253–265. https://doi.org/10.1016/j.jphotobiol.2016.05.007
  • Paramaguru, G., Kathiravan, A., Selvaraj, S., Venuvanalingam, P., & Renganathan, R. (2010). Interaction of anthraquinone dyes with lysozyme: Evidences from spectroscopic and docking studies. Journal of Hazardous Materials, 175(1–3), 985–991. https://doi.org/10.1016/j.jhazmat.2009.10.107
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Parrot, J. L., & Nicot, G. (1963). Antihistaminic action of lysozyme. Nature, 197, 496. https://doi.org/10.1038/197496a0
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Roufegarinejad, L., Jahanban-Esfahlan, A., Sajed-Amin, S., Panahi-Azar, V., & Tabibiazar, M. (2018). Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies. Journal of Molecular Recognition, 31(7), e2704. https://doi.org/10.1002/jmr.2704
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1), 57–61.
  • Singha Roy, A., & Ghosh, P. (2016). Characterization of the binding of flavanone hesperetin with chicken egg lysozyme using spectroscopic techniques: Effect of pH on the binding. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 84(1–2), 21–34. https://doi.org/10.1007/s10847-015-0578-8
  • Strynadka, N. C., & James, M. N. (1991). Lysozyme revisited: Crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. Journal of Molecular Biology, 220(2), 401–424. https://doi.org/10.1016/0022-2836(91)90021-W
  • Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881–1955): Discoverer of penicillin. Singapore Medical Journal, 56(7), 366–367. https://doi.org/10.11622/smedj.2015105
  • Thiel, E. (2001). Introduction to fluorescence spectroscopy, A. Sharma and S. G. Schulman John Wiley & Sons, Chichester, 1999; price £38.95 173 pp. Magnetic Resonance in Chemistry, 39(5), 299–299. https://doi.org/10.1002/mrc.829
  • Tian, F.-F., Li, J.-H., Jiang, F.-L., Han, X.-L., Xiang, C., Ge, Y.-S., Li, L.-L., & Liu, Y. (2012). The adsorption of an anticancer hydrazone by protein: An unusual static quenching mechanism. RSC Advances, 2(2), 501–513. https://doi.org/10.1039/C1RA00521A
  • Tian, F.-F., Jiang, F.-L., Han, X.-L., Xiang, C., Ge, Y.-S., Li, J.-H., Zhang, Y., Li, R., Ding, X.-L., & Liu, Y. (2010). Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. The Journal of Physical Chemistry B, 114(46), 14842–14853. https://doi.org/10.1021/jp105766n
  • Tong, J.-Q., Tian, F.-F., Li, Q., Li, L.-L., Xiang, C., Liu, Y., Dai, J., & Jiang, F.-L. (2012). Probing the adverse temperature dependence in the static fluorescence quenching of BSA induced by a novel anticancer hydrazone. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 11(12), 1868–1879. https://doi.org/10.1039/C2PP25162K
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Vo-Dinh, T. (1978). Multicomponent analysis by synchronous luminescence spectrometry. Analytical Chemistry, 50(3), 396–401. https://doi.org/10.1021/ac50025a010
  • Wang, H., Lu, X., Yao, H., Feng, J., & Liu, R. (2009). Research progress on application of coumarin and its derivatives. Chemical Industry Times, 23(8), 40–43.
  • Wang, Y.-Q., Zhang, H.-M., & Zhou, Q.-H. (2009). Studies on the interaction of caffeine with bovine hemoglobin. European Journal of Medicinal Chemistry, 44(5), 2100–2105. https://doi.org/10.1016/j.ejmech.2008.10.010
  • Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32(Web Server issue), W668–W673. https://doi.org/10.1093/nar/gkh371
  • Xiao, J., Wei, X., Wang, Y., & Liu, C. (2009). Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 74(4), 977–982. https://doi.org/10.1016/j.saa.2009.09.003
  • Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S., & Lee, K.-H. (2003). Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Medicinal Research Reviews, 23(3), 322–345. https://doi.org/10.1002/med.10034
  • Yu, S. M., Hu, D. H., & Zhang, J. J. (2015). Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Molecular Medicine Reports, 12(3), 3869–3873. https://doi.org/10.3892/mmr.2015.3797
  • Yue, Y., Wang, Z., Wang, Z., Zhang, Y., & Liu, J. (2018). A comparative study of binding properties of different coumarin-based compounds with human serum albumin. Journal of Molecular Structure, 1169, 75–80. https://doi.org/10.1016/j.molstruc.2018.05.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.